Influence of the Component Ratio in the Ti–B System on the Structure and Properties of Materials Fabricated by SHS Extrusion
- Autores: Konstantinov A.S.1, Chizhikov A.P.1, Antipov M.S.1, Bazhin P.M.1
- 
							Afiliações: 
							- Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences
 
- Edição: Volume 68, Nº 6 (2023)
- Páginas: 842-848
- Seção: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
- URL: https://rjeid.com/0044-457X/article/view/665248
- DOI: https://doi.org/10.31857/S0044457X22602395
- EDN: https://elibrary.ru/UFZSSY
- ID: 665248
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We studied how the ratio of precursor titanium and boron powders influenced the combustion temperature and combustion velocity in the high-temperature self-propagating synthesis (SHS) mode, and the microstructure, phase composition, and mechanophysical properties of rods fabricated by SHS extrusion. The subject matters of the study were materials for which the as-batch phase compositions of products were TiB–(20–40) wt % Ti. The formation of boron solid solution in titanium was considered. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and mechanical measurements implied the texture of the prepared materials (TiB whiskers were aligned in the direction in which the external pressure was applied). In all of the composites studied, the conductivity was close to the conductivity of undoped titanium; the electrical resistance increased slightly in response to increasing boron weight fraction. The three-point bending strength of the material increased by a factor of 1.7 at most as the weight fraction of boron solid solution in titanium increased from 20 to 40 wt %.
Palavras-chave
Sobre autores
A. Konstantinov
Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences
														Email: mora1997@mail.ru
				                					                																			                												                								142432, Chernogolovka, Moscow oblast, Russia						
A. Chizhikov
Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences
														Email: mora1997@mail.ru
				                					                																			                												                								142432, Chernogolovka, Moscow oblast, Russia						
M. Antipov
Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences
														Email: mora1997@mail.ru
				                					                																			                												                								142432, Chernogolovka, Moscow oblast, Russia						
P. Bazhin
Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: mora1997@mail.ru
				                					                																			                												                								142432, Chernogolovka, Moscow oblast, Russia						
Bibliografia
- Hayat M.D., Singh H., He Z., Cao P. // Composites Part A. 2019. V. 121. P. 418. https://doi.org/10.1016/j.compositesa.2019.04.005
- Zhang Y., He S., Yang W. et al. // Mater. 2019. V. 12. № 23. P. 4006. https://doi.org/10.3390/ma12234006
- Joseph A.O., Jina Z., Yang H., Matthew S.D. // ACS Appl. Nano Mater. 2020. V. 3. № 8. P. 8208. https://doi.org/10.1021/acsanm.0c01640
- Anil V.K., Gupta R.K., Prasad M.J.N.V., Narayana M.S.V.S. // J. Mater. Res. 2021. V. 36. № 3. P. 689. https://doi.org/10.1557/s43578-021-00104-w
- Comín R., Cid M.P., Grinschpun L. et al. // J. Appl. Biomater. Funct. Mater. 2017. V. 15. № 3. P. 176. https://doi.org/10.5301/jabfm.5000340
- Chen Y., Zhang J., Dai N. et al. // Electrochim. Acta. 2017. V. 232. P. 89. https://doi.org/10.1016/j.electacta.2017.02.112
- Sousa L., Alves A.C., Costa N.A. et al. // J. Alloys Compd. 2022. V. 896. № 162965. https://doi.org/10.1016/j.jallcom.2021.162965
- Chen T., Li W., Liu D. et al. // Ceram. Int. 2021. V. 47. № 1. P. 755. https://doi.org/10.1016/j.ceramint.2020.08.186
- Otte J.A., Zou J., Patel R. et al. // Nanomater. 2020. V. 10. № 12. P. 1. https://doi.org/10.3390/nano10122480
- An Q., Huang L., Jiang S. et al. // Ceram. Int. 2020. V. 46. № 6. P. 8068. https://doi.org/10.1016/j.ceramint.2019.12.032
- Feng Y., Feng K., Yao C. et al. // Mater. Des. 2018. V. 157. P. 258. https://doi.org/10.1016/j.matdes.2018.07.045
- Tao X., Yao Z., Zhang S. et al. // Surf. Coat. Technol. 2018. V. 337. https://doi.org/10.1016/j.surfcoat.2018.01.054
- Zhang G., Li S., Qu H. et al. // Adv. Mater. Sci. Eng. 2022. V. 20. 8906135 https://doi.org/10.1155/2022/8906135
- Pathi H., Mishri T.K., Panigrahi S.R. et al. // East Eur. J. Phys. 2021. № 3. P. 5. https://doi.org/10.26565/2312-4334-2021-3-01
- Sanguigno L., Lepore M.A., Maligno A.R. // Adv. Transdisciplinary Eng. 2021. V. 15. P. 159. https://doi.org/10.3233/ATDE210030
- Zhang G., Yuan M., Hou H. // J. Plast. Eng. 2020. V. 27. № 9. P. 117. https://doi.org/10.3969/j.issn.1007-2012.2020.09.017
- Weng F., Yu H., Du X. et al. // Ceram. Int. 2022. V. 48. № 5. P. 7056. https://doi.org/10.1016/j.ceramint.2021.11.263
- Song Y., Qiu F., Savvakin D. et al. // Mater. 2022. V. 15. № 3. P. 1049. https://doi.org/10.3390/ma15031049
- Muhammad D.H., Harshpreet S., Zhen H., Peng C. // Composites Part A. 2019. V. 121. P. 418. https://doi.org/10.1016/j.compositesa.2019.04.005
- Van P.P. // Eng. Struct. 2021. V. 229. 111567. https://doi.org/10.1016/j.engstruct.2020.111567
- Yang Y., Chen J., Huang Z. // Int. J. Damage Mech. 2020. V. 29. № 1. P. 67. https://doi.org/10.1177/1056789519854488
- Dadbakhsh S., Mertens R., Hao L. et al. // Adv. Eng. Mater. 2019. V. 1. 1801144. https://doi.org/10.1002/adem.201801244
- Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2040. [Бажин П.М., Константинов А.С., Чижиков А.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1829. https://doi.org/10.31857/S0044457X22601225].https://doi.org/10.1134/S0036023622601696
- Xie L., Ren S., Yin F. // Mater. Charact. 2023. V. 195. 112511. https://doi.org/10.1016/j.matchar.2022.112511
- Tian N., Dong L.L., Wang H.L. et al. // J. Alloys Compd. 2021. V. 867. https://doi.org/10.1016/j.jallcom.2021.159093
- Wu H., Lei C., Du Y. et al. // Ceram. Int. 2021. V. 47. № 8. P. 11423. https://doi.org/10.1016/j.ceramint.2020.12.269
- Huo P., Zhao Z., Du W., Bai P. // Ceram. Int. 2021. V. 47. № 14. P. 19546. https://doi.org/10.1016/j.ceramint.2021.03.292
- Wang M., Cui H., Wei N. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 4. P. 4250. https://doi.org/10.1021/acsami.7b17286
- Peng Y.B., Zhang W., Mei X.L. et al. // Mater. Today Commun. 2020. V. 24. https://doi.org/10.1016/j.mtcomm.2020.101009
- Lapshin O.V., Boldyreva E.V., Boldyrev V.V. // Russ. J. Inorg. Chem. 2021. V. 66. № 3. P. 433. [Лапшин О.В., Болдырева Е.В., Болдырев В.В. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 402. https://doi.org/10.31857/S0044457X21030119]https://doi.org/10.1134/S0036023621030116
- Chizhikov A.P., Konstantinov A.S., Bazhin P.M. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1115. [Чижиков А.П., Константинов А.С., Бажин П.М. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1002. https://doi.org/10.31857/S0044457X21080031]https://doi.org/10.1134/S0036023621080039
- Radishevskaya N.I., Nazarova A.Y., L’vov O.V. et al. // Inorg. Mater. 2020. V. 56. № 2. P. 142. [Радишевская Н.И., Назарова А.Ю., Львов О.В. и др. // Неорган. материалы 2020. Т. 56. № 2. С. 151.]https://doi.org/10.1134/S0020168520010112
- Zhang X., Xu Q., Han J. et al. // Mater. Sci. Eng. 2003. P. 41. https://doi.org/10.1016/S0921-5093(02)00635-4
- Kovalev D.Yu., Konstantinov A.S., Konovalikhin S.V. et al. // Combust. Explosion Shock Waves. 2020. V. 56. № 6. P. 648. [Ковалев Д.Ю., Константинов А.С., Коновалихин С.В. и др. // Физика горения и взрыва. 2020. Т. 56. № 6. С. 33. https://doi.org/10.15372/FGV20200604]https://doi.org/10.1134/S0010508220060040
- Podlesov V.V., Radugin A.V., Stolin A.M., Merzhanov A.G. // Inzhenerno-Fizicheskii Zhurnal. 1992. V. 63. № 5. P. 525.
- Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Mater. Today Commun. 2020. V. 25. P. 101484. https://doi.org/10.1016/j.mtcomm.2020.101484
- Stel’makh L.S., Stolin. A.M., Bazhin. P.M. // Inorg. Mater. 2020. V. 56. № 7. P. 695. https://doi.org/10.1134/S0020168520070158
- Konstantinov A.S., Bazhin P.M., Stolin A.M. et al. // Composites Part A. 2018. V. 108. P. 79. https://doi.org/10.1016/j.compositesa.2018.02.027
- Bazhin P.M., Kostitsyna E.V., Stolin A.M. et al. // Ceram. Int. 2019. V. 45. № 7. P. 9297. https://doi.org/10.1016/j.ceramint.2019.01.188
- Bolotskaya A.V., Mikheev M.V. // Refract. Ind. Ceram. 2020. V. 61. № 3. P. 336. https://doi.org/10.1007/s11148-020-00483-3
- Antipov M.S., Bazhin P.M., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1658. [Антипов М.С., Бажин П.М., Чижиков А.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1498. https://doi.org/10.31857/S0044457X22100361]https://doi.org/10.1134/S0036023622100564
- Bazhin P., Chizhikov A., Stolin A. et al. // Ceram. Int. 2021. V. 47 P. 28444. https://doi.org/10.1016/j.ceramint.2021.06.262
- Stolin A.M., Bazhin P.M. // J. SHS. 2014. V. 23. № 2. P. 65. https://doi.org/10.3103/S1061386214020113
- Bazhin P.M., Stolin A.M., Alymov M.I. // Nanotechnol. Russ. 2014. V. 9. № 11–12. P. 583. https://doi.org/10.1134/S1995078014060020
- Bazhin P.M., Kostitsyna E.V., Stolin A.M. et al. // Ceram. Int. 2019. V. 45. № 7. P. 9297.https://doi.org/10.1016/j.ceramint.2019.01.188
- Bazhin P.M., Stolin A.M., Shcherbakov V.A. et al. // Dokl. Chem. 2010. V. 430. № 2. P. 58. https://doi.org/10.1134/S0012500810020072
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



