Ceramics of the Cs2O–Al2O3 System Prepared by Solid-Phase Technology and the Glycine–Nitrate Combustion Process
- Autores: Fedorova A.V.1, Stolyarov V.A.1, Pavelina M.E.1, Kolonitskii P.D.1, Kirichenko S.O.1, Timchuk A.V.2, Stolyarova V.L.1
- 
							Afiliações: 
							- St. Petersburg State University
- St. Petersburg State Electrotechnical University “LETI” named after V.I. Ul’yanov (Lenin)
 
- Edição: Volume 68, Nº 7 (2023)
- Páginas: 975-987
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjeid.com/0044-457X/article/view/665232
- DOI: https://doi.org/10.31857/S0044457X23600275
- EDN: https://elibrary.ru/RIKGEI
- ID: 665232
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Cs2O–Al2O3 ceramic samples containing 20 and 33 mol % cesium oxide were prepared by сeramic technique and by the glycine–nitrate combustion process. The prepared samples were identified and characterized by X-ray powder diffraction and X-ray fluorescence analyses, scanning electron microscopy, and differential thermal analysis. X-ray powder diffraction and scanning electron microscopy showed that the phase composition and surface of the samples change significantly and nonmonotonically depending on the synthetic method used and the heat treatment parameters of the batch. Optimal synthetic conditions and heat treatment parameters for preparing Cs2O–Al2O3 samples were elucidated.
Sobre autores
A. Fedorova
St. Petersburg State University
														Email: avfiodorova@gmail.com
				                					                																			                												                								199034, St. Petersburg, Russia						
V. Stolyarov
St. Petersburg State University
														Email: avfiodorova@gmail.com
				                					                																			                												                								199034, St. Petersburg, Russia						
M. Pavelina
St. Petersburg State University
														Email: avfiodorova@gmail.com
				                					                																			                												                								199034, St. Petersburg, Russia						
P. Kolonitskii
St. Petersburg State University
														Email: avfiodorova@gmail.com
				                					                																			                												                								199034, St. Petersburg, Russia						
S. Kirichenko
St. Petersburg State University
														Email: avfiodorova@gmail.com
				                					                																			                												                								199034, St. Petersburg, Russia						
A. Timchuk
St. Petersburg State Electrotechnical University “LETI” named after V.I. Ul’yanov (Lenin)
														Email: avfiodorova@gmail.com
				                					                																			                												                								197022, St. Petersburg, Russia						
V. Stolyarova
St. Petersburg State University
							Autor responsável pela correspondência
							Email: avfiodorova@gmail.com
				                					                																			                												                								199034, St. Petersburg, Russia						
Bibliografia
- Prins R. // J. Catal. 2020. V. 392. P. 336. https://doi.org/10.1016/j.jcat.2020.10.010
- Busca G. // Prog. Mater. Sci. 2019. V. 104. P. 215. https://doi.org/10.1016/j.pmatsci.2019.04.003
- Meephoka C., Chaisuk C., Samparnpiboon P., Praserthdam P. // Catal. Commun. 2008. V. 9. P. 546. https://doi.org/10.3390/cryst11060690
- Shreyas P.S., Mahesh B.P., Rajanna S., Rajesh N. // Mat. Tood. Proc. 2021. V. 45. P. 429. https://doi.org/10.1016/j.matpr.2020.12.1012
- Подзорова Л.И., Ильичёва А.А., Пенькова О.И. и др. // Неорган. материалы. 2019. Т. 55. С. 671. https://doi.org/0.1134/S0002337X19060125
- Chaitree W., Jiemsirilers S., Mekasuwandumrong O. et al. // Catal. Today. 2011. V. 164. P. 302. https://doi.org/10.1016/j.cattod.2010.11.004
- Tsybulya S.V., Kryukova G.N. // Phys. Rev. B. 2008. V. 77. P. 024112. https://doi.org/10.1103/PhysRevB.77.024112
- Paglia G., Buckley C.E., Rohl A.L. et al. // Phys. Rev. B. 2003. V. 68. P. 144110. https://doi.org/10.1103/PhysRevB.68.144110
- Rudolph M., Motylenko M., Rafaja D. // IUCrJ. 2019. V. 6. P. 116. https://doi.org/10.1107/S2052252518015786
- Marí B., Singh K.C., Moya M. et al. // Opt. Quant. Electr. 2015. V. 47. P. 1569. https://doi.org/10.1007/s11082-014-9997-9
- Saeed Adel M.N., Al-Gunaid Murad Q.A., Subramani N.K. et al. // Pol.-Plast. Tech. Eng. 2018. V. 57. P. 1188. https://doi.org/10.1080/03602559.2017.1373402
- McMillan P.F., Grzechnik A., Chotalla H. // J. Non-Cryst. Solids. 1998. V. 226. № 3. P. 239. https://doi.org/10.1016/S0022-3093(98)00416-5
- Fukumi K., Sakka S., Kokubo T. // J. Non-Cryst. Solids. 1987. V. 93. P. 190. https://doi.org/10.1016/S0022-3093(87)80038-8
- Macleod N., Keel J.M., Lambert R.M. // Catal. Lett. 2003. V. 86. P. 51. https://doi.org/10.1023/A:1022602807322
- Ansari A.A., Khan M.A.M., Khan M.N., Alrokayan S.A. // J. Semicond. 2011. V. 32. P. 1. https://doi.org/10.1088/1674-4926/32/4/043001
- Guéneau C., Flèche J.L. // Calphad. 2015. V. 49. P. 67. https://doi.org/10.1016/j.calphad.2015.02.002
- Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2021. V. 35. P. e9079. https://doi.org/10.1002/rcm.9079
- Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2021. V. 35. P. e9097. https://doi.org/10.1002/rcm.9097
- Каймиева О.С., Сабирова И.Э., Буянова Е.С., Петрова С.А. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1211. https://doi.org/10.31857/S0044457X22090057
- Медведева А.Е., Махонина Е.В., Печень Л.С. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 896. https://doi.org/10.31857/S0044457X22070157
- Babaev E.V. // Russ. J. Gen. Chem. 2010. V. 80. P. 2590. https://doi.org/10.1134/S1070363210120261
- O’Donnell M.J., Zhou C., Scott W.L. // J. Am. Chem. Soc. 1996. V. 118. P. 6070. https://doi.org/10.1021/ja9601245
- Симоненко Т.Л., Симоненко Н.П., Симоненко Е.П., Кузнецов Н.Т. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1359. https://doi.org/10.31857/S0044457X22600736
- Томилин О.Б., Мурюмин Е.Е., Фадин М.В., Щипакин С.Ю. // Журн. неорган. химии. 2022. Т. 67. № 4. С. 457. https://doi.org/10.31857/S0044457X22040195
- Wang J., Zhao H., Wen Y. // Electrochim. Acta. 2013. V. 113. P. 679. https://doi.org/10.1016/j.electacta.2013.09.086
- Журавлев В.Д., Васильев В Г., Владимирова Е.В. и др. // Физ. хим. стекла. 2010. Т. 36. № 4. С. 632. https://doi.org/10.1134/S1087659610040164
- Cardarelli F. Materials handbook. London: Springer-Verlag, 2008. P. 600.
- Zhou R.-S., Snyder R. // Acta Crystallogr., Sect. B: Struct. Sci. 1991. V. 47. P. 617. https://doi.org/10.1107/S0108768191002719
- Langlet G. // C. R. Acad. Sci. 1964. V. 259. P. 3769.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 









