On the escape of the diffusing particle from the cavity
- Authors: Zitserman V.Y.1, Makhnovskii Y.A.2
- 
							Affiliations: 
							- Joint Institute for High Temperatures, Russian Academy of Sciences
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
 
- Issue: Vol 99, No 3 (2025)
- Pages: 428–432
- Section: PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
- Submitted: 03.06.2025
- Published: 29.05.2025
- URL: https://rjeid.com/0044-4537/article/view/682021
- DOI: https://doi.org/10.31857/S0044453725030075
- EDN: https://elibrary.ru/ECBIVX
- ID: 682021
Cite item
Abstract
The problem of escape of a Brownian particle from a cylindrical cavity through a hole on the surface of one of the cylinder ends is considered. Using the method of surface homogenization, a one-dimensional description of the process is proposed. The solution obtained with its help allows finding the average lifetime of a particle in such a cavity with any size of the hole. Its qualitative difference from the well-known solution for the mean lifetime of a particle diffusing in an isometric (sphere-like) cavity is that the previously obtained result depends only on the volume of the cavity while the solution found in this work depends both on the volume and on the length of the cylinder.
Full Text
 
												
	                        About the authors
V. Yu. Zitserman
Joint Institute for High Temperatures, Russian Academy of Sciences
							Author for correspondence.
							Email: vz1941@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow, 125412						
Yu. A. Makhnovskii
A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
														Email: vz1941@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119991						
References
- Tartakovsky D.M., Dentz M. // Trans. Porous Media. 2019. V. 130. № 1. P. 105.
- Holcman D., Schuss Z. // J. Chem. Phys. 2005. V. 122. № 11. P. 4710.
- Berezhkovskii A.M., Barzykin A.V., Zitserman V.Yu. // J. Chem. Phys. 2009. V. 130. № 24. P. 5104.
- Schuss Z., Singer A., Holcman D. // Proc. Nat. Acad. Sci (USA). 2007. V. 104. № 41. P. 16098.
- Григорьев И.В., Махновский Ю.А., Бережковский А.М., Зицерман В.Ю. // Журн. физ. химии. 2003. Т. 77. № 8. С. 1426. [Grigor’ev I.V., Makhnovskii Y.A., Berezhkovskii A.M., Zitserman V.Y. // Russ. J. Phys. Chem. A. 2003. V. 77. № 8. P. 1277.]
- Hughes A., Faulkner C., Morris R.J., Tomkins M. // IEEE Trans. Mol. Biol. Multi-Scale Commun. 2021. V. 7. № 2. P. 89.
- Holcman D., Schuss Z. Stochastic Narrow Escape in Molecular and Cellular Biology. Berlin: Springer, 2015.
- Ward M.J., Keller J.B. // SIAM J. Appl. Math. 1993. V. 53. № 3. P. 770.
- Grigoriev I.V., Makhnovskii Y.A., Berezhkovskii A.M., Zitserman V.Y. // J. Chem. Phys. 2002. V. 116. № 22. P. 9574.
- Bénichou O., Voituriez R. // Phys. Rep. 2014. V. 539. № 4. P. 225.
- Grebenkov D.S., Oshanin G. // Phys. Chem. Chem. Phys. 2017. V. 19. № 4. P. 2723.
- Doi M., Xu X. // J. Phys. Chem. B. 2022. V. 126. № 33. P. 6171.
- Hill T L. // Proc. Nat. Acad. Sci (USA). 1975. V. 72. № 12. P. 4918.
- Berezhkovski A.M., Makhnovskii Yu.A., Monine M.I., et al. // J. Chem. Phys. 2004. V. 121. № 22. P. 11390.
- Махновский Ю.А., Бережковский А.М., Зицерман В.Ю. // Журн. физ. хим. 2006. Т. 80. № 7. С. 1. [Makhnovskii Y.A., Berezhkovskii A.M., Zitserman V.Y. // Russ. J. Phys. Chem. 2006. V. 80. № 7. P. 1129.]
- Berezhkovskii A.M., Monine M.I., Muratov C.B., Shvartsman S.Y. // J. Chem. Phys. 2006. V. 124. № 3. P. 6103.
- Гардинер К.В. Стохастические методы в естественных науках. М.: Мир, 1986.
- Понтрягин Л.С., Андронов А.А., Витт А.А. // ЖЭТФ. 1933. Т. 3. № 3. С. 165.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted

