Fe- and Cu–Zn-Containing Catalysts Based on Natural Aluminosilicate Nanotubes and Zeolite H-ZSM-5 in the Hydrogenation of Carbon Dioxide
- Autores: Smirnova E.M.1, Evdokimenko N.D.2, Reshetina M.V.1, Demikhova N.R.1, Kustov A.L.2, Dunaev S.F.2, Vinokurov V.A.1, Glotov A.P.1,2
- 
							Afiliações: 
							- Gubkin State University of Oil and Gas
- Faculty of Chemistry, Moscow State University
 
- Edição: Volume 97, Nº 7 (2023)
- Páginas: 952-959
- Seção: CHEMICAL KINETICS AND CATALYSIS
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.07.2023
- URL: https://rjeid.com/0044-4537/article/view/668696
- DOI: https://doi.org/10.31857/S0044453723070270
- EDN: https://elibrary.ru/SMHNKL
- ID: 668696
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Iron- and Cu–Zn-containing carbon dioxide hydrogenation catalysts based on natural aluminosilicate nanotubes and zeolite H-ZSM-5 are synthesized. Their textural and acidic properties are studied via low-temperature nitrogen adsorption–desorption, temperature-programmed desorption of ammonia, temperature-programmed reduction of hydrogen, and elemental analysis. The effect the temperatures of the reaction have on the conversion of CO2 and distribution of its product is studied. Catalysts based on aluminosilicate halloysite nanotubes exhibit methanol and С2–С4 hydrocarbon selectivities of 88 and 16%, respectively.
Palavras-chave
Sobre autores
E. Smirnova
Gubkin State University of Oil and Gas
														Email: smirnova.em94@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
N. Evdokimenko
Faculty of Chemistry, Moscow State University
														Email: smirnova.em94@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
M. Reshetina
Gubkin State University of Oil and Gas
														Email: smirnova.em94@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
N. Demikhova
Gubkin State University of Oil and Gas
														Email: smirnova.em94@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
A. Kustov
Faculty of Chemistry, Moscow State University
														Email: smirnova.em94@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
S. Dunaev
Faculty of Chemistry, Moscow State University
														Email: smirnova.em94@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
V. Vinokurov
Gubkin State University of Oil and Gas
														Email: smirnova.em94@gmail.com
				                					                																			                												                								119991, Moscow, Russia						
A. Glotov
Gubkin State University of Oil and Gas; Faculty of Chemistry, Moscow State University
							Autor responsável pela correspondência
							Email: smirnova.em94@gmail.com
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
Bibliografia
- Yang H., Xu Z., Fan M. et al. // J. of Environmental Sciences. 2008. V. 20. № 1. P. 14–27.
- Mikkelsen M., Jørgensen M., Krebs F.C. // Energy and Environmental Science. 2010. V. 3. № 1. P. 43–81.
- Férey G., Serre C., Devic T. et al. // Chemical Society Reviews. 2011. V. 40. № 2. P. 550–562. https://doi.org/10.1039/c0cs00040j
- Hunt A.J., Sin E.H.K., Marriott R., Clark J.H. // ChemSusChem. 2010. V. 3. № 3. P. 306–322.
- Centi G., Perathoner S. // Studies in Surface Science and Catalysis. 2004. V. 153. P. 1–8.
- Sai Prasad P.S., Bae J.W., Jun K.W., Lee K.W. // Catalysis Surveys from Asia. 2008. V. 12. № 3. P. 170–183.
- Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Functional Materials Letters. 2020. V. 13. № 4. P. 2040004.
- Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. № 10. P. 2883.
- Kovalskii A.M., Volkov I.N., Evdokimenko N.D. et al. // Applied Catalysis B: Environmental. 2022. V. 303. P. 120891.
- Konopatsky A.S., Firestein K.L., Evdokimenko N.D. et al. // J. of Catalysis. 2021. V. 402. P. 130.
- Frontera P., Macario A., Malara A. et al. // Functional Materials Letters. 2018. V. 11. № 5. P. 1850061.
- Evdokimenko N., Yermekova Z., Roslyakov S. et al. // Materials. 2022. V. 15. № 15. P. 5129.
- Ye R.P., Ding J., Gong W. et al. // Nature Communications. 2019. V. 10. № 1. P. 1–15.
- Wang G., Mao D., Guo X., Yu J. // International Journal of Hydrogen Energy. 2019. V. 44. № 8. P. 4197–4207.
- Tursunov O., Kustov L., Kustov A. // Oil and Gas Science and Technology. 2017. V. 72. № 5. P. 30.
- Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. № 3. P. 1065.
- Li Z., Qu Y., Wang J. et al. // Joule. 2019. V. 3. № 2. P. 570.
- Rafiee A., Khalilpour K.R., Milani D. et al. // J. of Environmental Chemical Engineering. 2018. V. 6. № 5. P. 5771.
- Ni Y., Chen Z., Fu Y. et al. // Nature Communications. 2018. V. 9. № 1. P. 1.
- Wang Y., Tan L., Tan M. et al. // ACS Catalysis. 2019. V. 9. № 2. P. 895.
- Li Z., Wang J., Qu Y. et al. // Ibid. 2017. V. 7. № 12. P. 8544.
- Gao P., Li S., Bu X. et al. // Nature Chemistry. 2017. V. 9. № 10. P. 1019.
- Wang J., Zhang A., Jiang X. et al. // J.of CO2 Utilization. 2018. V. 27. № 2. V. 81.
- Liu X., Wang M., Zhou C. // Chemical Communications. 2017. V. 54. № 2. P. 140.
- Gao P., Dang S., Li S. et al. // ACS Catalysis. 2018. V. 8. № 1. P. 57.
- Wang J., You Z., Zhang Q. et al. // Catalysis today. 2013. V. 215. P. 18.
- Wei J., Ge Q., Yao R. et al. // Nature communications. 2017. V. 8. № 1. P. 1.
- Rubtsova M., Smirnova E., Boev S. et al. // Microporous and Mesoporous Materials. 2022. V. 330. № 8. P. 111622.
- Afokin M.I., Smirnova E.M., Starozhitskaya A.V. et al. // Chemistry and Technology of Fuels and Oils. 2020. V. 55. № 6. P. 682.
- Demikhova N.R., Boev S.S., Reshetina M.V. et al. // Petroleum Chemistry. 2021. V. 61. № 10. P. 1085.
- Smirnova E.M., Melnikov D.P., Demikhova N.R. et al. // Petroleum Chemistry. 2021. V. 61. № 7. P. 773.
- Glotov A., Vutolkina A., Pimerzin A. et al. // Chemical Society Reviews. 2021. V. 50. № 16. P. 9240.
- Mosallanejad S., Dlugogorski B.Z., Kennedy E.M. et al. // ACS Omega. 2018. V. 3. № 5. P. 5362.
- Zhu N., Lian Z., Zhang Y. et al. // Applied Surface Science. 2019. V. 483. P. 536.
- Oseke G.G., Atta A.Y., Mukhtar B. et al. // J. of King Saud University-Engineering Sciences. 2021. V. 33. № 8. P. 531.
- Ayodele O.B., Tasfy S.F.H., Zabidi N.A.M. et al. // J. of CO2 Utilization. 2017. V. 17. P. 273.
- Liu Y., Zhang Y., Wang T., Tsubaki N. // Chemistry Letters. 2007. V. 36. № 9. P. 1182.
- Cui W.-G., Li Y.-Т., Yu L. et al. // ACS applied materials & interfaces. 2021. V. 13. № 16. P. 18693.
- Li C., Yuan X., Fujimoto K. // Applied Catalysis A: General. 2014. V. 469. P. 306.
- Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Rus. J. of Physical Chemistry A. 2021. V. 95. № 12. P. 2422.
- Bansode A., Urakawa A. // J. of Catalysis. 2014. V. 309. P. 66.
- Liu R., Ma Z., Sears J.D. et al. // J. of CO2 Utilization. 2020. V. 41. P. 101290.
- Dorner R.W., Hardy D.R., Williams F.W. et al. // Applied Catalysis A: General. 2010. V. 373. № 1–2. P. 112.
- Lan L., Wang A., Wang Y. // Catalysis Communications. 2019. V. 130. P. 105761.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





