Preparing Thin Gallium Sulphide Films via PECVD and Studying Their Properties
- Autores: Mochalov L.A.1, Kudryashov M.A.2, Logunov A.A.1,2, Vshivtsev M.A.2, Prokhorov I.O.2, Vorotyntsev V.M.2, Malyshev V.M.2, Sazanova T.S.2,3, Kudryashova Y.P.1, Bulanov E.N.1, Knyazev A.V.1
- 
							Afiliações: 
							- Lobachevsky University
- Nizhny Novgorod State Technical University
- Mendeleev University of Chemical Technology
 
- Edição: Volume 97, Nº 1 (2023)
- Páginas: 148-154
- Seção: PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.01.2023
- URL: https://rjeid.com/0044-4537/article/view/668882
- DOI: https://doi.org/10.31857/S0044453723010211
- EDN: https://elibrary.ru/BCQPAV
- ID: 668882
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Thin films of GaSх are obtained via plasma-enhanced chemical vapor deposition (PECVD) for the first time, while high-purity volatile derivatives of the corresponding macrocomponents (gallium chloride (GaCl3) and hydrogen sulfide (H2S)) are used as the initial materials. It is found that the nonequilibrium low-temperature plasma of an HF discharge (40.68 MHz) at a reduced pressure (0.01 Torr) is the initiator of chemical transformations. Components of reactive plasma formed in the gas phase are studied via optical emission spectroscopy (OES). Structural and electrophysical properties of the obtained materials are studied as well.
Palavras-chave
Sobre autores
L. Mochalov
Lobachevsky University
														Email: knyazevav@gmail.com
				                					                																			                												                								603022, Nizhny Novgorod, Russia						
M. Kudryashov
Nizhny Novgorod State Technical University
														Email: knyazevav@gmail.com
				                					                																			                												                								603155, Nizhny Novgorod, Russia						
A. Logunov
Lobachevsky University; Nizhny Novgorod State Technical University
														Email: knyazevav@gmail.com
				                					                																			                												                								603022, Nizhny Novgorod, Russia; 603155, Nizhny Novgorod, Russia						
M. Vshivtsev
Nizhny Novgorod State Technical University
														Email: knyazevav@gmail.com
				                					                																			                												                								603155, Nizhny Novgorod, Russia						
I. Prokhorov
Nizhny Novgorod State Technical University
														Email: knyazevav@gmail.com
				                					                																			                												                								603155, Nizhny Novgorod, Russia						
V. Vorotyntsev
Nizhny Novgorod State Technical University
														Email: knyazevav@gmail.com
				                					                																			                												                								603155, Nizhny Novgorod, Russia						
V. Malyshev
Nizhny Novgorod State Technical University
														Email: knyazevav@gmail.com
				                					                																			                												                								603155, Nizhny Novgorod, Russia						
T. Sazanova
Nizhny Novgorod State Technical University; Mendeleev University of Chemical Technology
														Email: knyazevav@gmail.com
				                					                																			                												                								603155, Nizhny Novgorod, Russia; 125047, Moscow, Russia						
Yu. Kudryashova
Lobachevsky University
														Email: knyazevav@gmail.com
				                					                																			                												                								603022, Nizhny Novgorod, Russia						
E. Bulanov
Lobachevsky University
														Email: knyazevav@gmail.com
				                					                																			                												                								603022, Nizhny Novgorod, Russia						
A. Knyazev
Lobachevsky University
							Autor responsável pela correspondência
							Email: knyazevav@gmail.com
				                					                																			                												                								603022, Nizhny Novgorod, Russia						
Bibliografia
- Basinski Z.S., Dove D.B., Mooser E. // Helv. Phys. Acta. 1961. V. 34. P. 373.
- Zappia M.I., Bianca G., Bellani S. et al. // J. Phys. Chem. C. 2021. V. 125. № 22. P. 11857. https://doi.org/10.1021/acs.jpcc.1c03597
- Jones A.C., O’Brien P. // CVD of Compound Semiconductors: Precursor Synthesis, Development and Applications. 1997. Ch. 1. Basic Concepts. P. 1. https://doi.org/10.1002/9783527614639.ch1
- Attolini G., Negri M., Besagni T. et al. // Mater. Sci. Eng. B. 2020. V. 261. P. 114623. https://doi.org/10.1016/j.mseb.2020.114623
- Goodyear J., Steigmann G.A. // Acta Cryst. 1963. V. 16. P. 946. https://doi.org/10.1107/S0365110X63002565
- Harvey A., Backes C., Gholamvand Z. et al. // Chem. Mater. 2015. V. 27. № 9. P. 3483. https://doi.org/10.1021/acs.chemmater.5b00910
- Hu P., Wang L., Yoon M. et al. // Nano Lett. 2013. V. 13. № 4. P. 1649. https://doi.org/10.1021/nl400107k
- Huang W., Gan L., Li H. et al. // CrystEngComm. 2016. V. 18. P. 3968. https://doi.org/10.1039/C5CE01986A
- Moez A.A. // J. Mater Sci: Mater Electron. 2021. V. 32. P. 5668. https://doi.org/10.1007/s10854-021-05288-9
- Chen X., Hou X., Cao X. et al. // J. Cryst. Growth. 1997. V. 173. № 1–2. P. 51. https://doi.org/10.1016/S0022-0248(96)00808-1
- Eriguchi K., Biaou C., Das S. et al. // AIP Advances. 2020. V. 10. № 10. P. 105215. https://doi.org/10.1063/5.0021938
- Lu Y., Chen J., Chen T. et al. // Adv. Mater. 2020. V. 32. № 7. P. 1906958. https://doi.org/10.1002/adma.201906958
- Meng X., Libera J.A., Fister T.T. et al. // Chem. Mater. 2014. V. 26. № 2. P. 1029. https://doi.org/10.1021/cm4031057
- Rao P., Kumar S., Sahoo N.K. // Mater. Chem. Phys. 2015. V. 149–150. P. 164. https://doi.org/10.1016/j.matchemphys.2014.10.002
- Ertap H., Baydar T., Yüksek M., Karabulut M. // Turk. J. Phys. 2016. V. 40. № 3. P. 297. https://doi.org/10.3906/fiz-1604-14
- Micocci G., Rella R., Tepore A. // Thin Solid Films. 1989. V. 172. № 2. P. 179. https://doi.org/10.1016/0040-6090(89)90647-0
- Kuhs J., Hens Z., Detavernier C. // J. Vac. Sci. Technol. A. 2019. V. 37. № 2. P. 020915. https://doi.org/10.1116/1.5079553
- Sanz C., Guillén C., Gutiérrez M.T. // J. Phys. D: Appl. Phys. 2009. V. 42. № 8. P. 085108. https://doi.org/10.1088/0022-3727/42/8/085108
- Семенов В.Н., Лукин А.Н., Волков В.В., Остапенко О.В. // Весник ТГУ. 1999. Т. 4. Вып. 2. С. 234.
- Zheng N., Bu X., Feng P. // J. Am. Chem. Soc. 2003. V. 125. № 5. P. 1138. https://doi.org/10.1021/ja021274k
- Suh S., Hoffman D.M. // Chem. Mater. 2000. V. 12. № 9. P. 2794. https://doi.org/10.1021/cm0003424
- Horley G.A., Lazell M.R., O’Brien P. // Chem. Vap. Depos. 1999. V. 5. № 5. P. 203. https://doi.org/10.1002/(SICI)1521-3862(199910)5: 5%3C203::AID-CVDE203%3E3.0.CO;2-L
- Meng X., Libera J.A., Fister T.T. et al. // Chem. Mater. 2014. V. 26. № 2. P. 1029. https://doi.org/10.1021/cm4031057
- Mochalov L., Logunov A., Kitnis A., Vorotyntsev V. // Plasma Chem. Plasma Process. 2020. V. 40. № 1. P. 407. https://doi.org/10.1007/s11090-019-10035-4
- Vorotyntsev V.M., Malyshev V.M., Mochalov L.A. et al. // Sep. Purif. Technol. 2018. V. 199. P. 214. https://doi.org/10.1016/j.seppur.2018.01.065
- Mochalov L.A., Kornev R.A., Churbanov M.F., Sennikov P.G. // J. Fluor. Chem. 2016. V. 160. P. 48. https://doi.org/10.1016/j.jfluchem.2014.01.011
- Mochalov L.A., Kudryashov M.A., Logunov A.A. et al. // Plasma Chem. Plasma Process. 2021. V. 41. № 6. P. 1661. https://doi.org/10.1007/s11090-021-10190-7
- Mochalov L.A., Churbanov M.F., Velmuzhov A.P. et al. // Opt. Mater. 2015. V. 46. P. 310. https://doi.org/10.1016/j.optmat.2015.04.037
- Mochalov L., Logunov A., Gogova D. et al. // Opt. Quantum Electron. 2020. V. 52. P. 510. https://doi.org/10.1007/s11082-020-02625-w
- Mochalov L., Logunov A., Kudryashov M. et al. // Opt. Mater. Express. 2022. V. 12. № 4. P. 1741. https://doi.org/10.1364/OME.455345
- Vesel A., Kovac J., Primc G. et al. // Materials. 2016. V. 9. № 2. P. 95. https://doi.org/10.3390/ma9020095
- Zhang Q.‑Z., Wang W., Thille C., Bogaerts A. // Plasma Chem. Plasma Process. 2020. V. 40. № 5. P. 1163. https://doi.org/10.1007/s11090-020-10100-3
- Shirai T., Reader J., Kramida A.E., Sugar J. // J. Phys. Chem. Ref. Data. 2007. V. 36. № 2. https://doi.org/10.1063/1.2207144
- Thomas R.E., Burton R.L., Glumac N.G., Polzin K.A. // 30th International Electric Propulsion Conference. September 17–20, 2007. Florence, Italy.
- Шахатов В.А., Лебедев Ю.А., Lacoste A., Bechu S. // ТВТ. 2016. Т. 54. Вып. 4. С. 491 https://doi.org/10.7868/S0040364416040219
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





