Molecular Dynamics Simulation of Diisopropyl Ether Using Various Interatomic Potentials
- Autores: Kashurin O.V.1, Kondratyuk N.D.1,2,3, Lankin A.V.2,1, Norman G.E.2,1,3
- 
							Afiliações: 
							- Moscow Institute of Physics and Technology (National Research University)
- Joint Institute for High Temperatures, Russian Academy of Sciences
- National Research University Higher School of Economics
 
- Edição: Volume 97, Nº 6 (2023)
- Páginas: 836-842
- Seção: STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.06.2023
- URL: https://rjeid.com/0044-4537/article/view/668729
- DOI: https://doi.org/10.31857/S0044453723060092
- EDN: https://elibrary.ru/JHNSKI
- ID: 668729
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A comparative assessment of the accuracy of determining the density and viscosity has been carried out for diisopropyl ether using the method of classical molecular dynamics using three potentials. The accuracy of determining the viscosity coefficients when using equilibrium and nonequilibrium calculation methods was also investigated.
Palavras-chave
Sobre autores
O. Kashurin
Moscow Institute of Physics and Technology (National Research University)
														Email: kashurin.ov@phystech.edu
				                					                																			                												                								Dolgoprudny, Moscow oblast, Russia						
N. Kondratyuk
Moscow Institute of Physics and Technology (National Research University); Joint Institute for High Temperatures, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: kashurin.ov@phystech.edu
				                					                																			                												                								Moscow oblast, Russia; Moscow, Russia; Dolgoprudny; Moscow, Russia						
A. Lankin
Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
														Email: kashurin.ov@phystech.edu
				                					                																			                												                								Moscow, Russia; Dolgoprudny, Moscow oblast, Russia						
G. Norman
Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); National Research University Higher School of Economics
							Autor responsável pela correspondência
							Email: kashurin.ov@phystech.edu
				                					                																			                												                								Moscow, Russia; Dolgoprudny, Moscow oblast, Russia						
Bibliografia
- Campos Assuncao M., Cote G., Andre M. et al. // RSC Adv. 2017. № 7. P. 6922.
- Miran Milošević, Boelo Schuur, Andre B. De Haan // Chemical engineering transactions. 2011. V. 24. P. 733.
- Kristina Søborg Pedersen, Karin Michaelsen Nielsen, Jesper Fonslet et al. // Solvent Extraction and Ion Exchange. 2019. V. 37. № 5. P. 376.
- Piñeiro Á. // Fluid Phase Equilib. 2004. V. 216. P. 245.
- Kammerer K., Lichtenthaler R.N. // Thermochim. Acta. 1998. V. 310. P. 61.
- Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. № 9. P. 2353.
- Mohammed Rashid Ali, Noor Asma Fazli Abdul Samad // Physics and Chemistry of Liquids. 2021. V. 59. № 4. P. 1.
- Gui Liu, Zhongwei Zhao, Ahmad Ghahreman // Hydrometallurgy. 2019. V. 187. P. 81.
- Xue-Qiang Zhang, Qi Jin, Yi-Ling Nan et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 15503.
- Wei-Jing Chen, Chang-Xin Zhao, Bo-Quan Li et al. // Energy Environ. Mater. 2020. V. 3. P. 160.
- Manju Rani, Sanjeev Maken, So Jin Park // Korean J. Chem. Eng. 2019. V. 36. № 9. P. 1401.
- Гурина Д.Л., Антипова М.Л., Петренко В.Е. // Журн. физ. химии. 2011. Т. 85. № 5. С. 885.
- Антипова М.Л., Петренко В.Е. // Там же. 2013. Т. 87. № 7. С. 1196.
- Ланкин А.В., Норман Г.Э., Орехов М.А. // Там же. 2016. Т. 90. № 5. С. 710.
- Orekhov N., Kondratyuk N., Logunov M. et al. // Cryst. Growth Des. 2021. V. 21. № 4. P. 1984.
- Gupta A.K. // Mater. Today Proc. 2021. V. 44. P. 2380.
- Min Zhou, Ke Cheng, Guo-Zhu Jia // J. Mol. Liq. 2017. V. 230. P. 137.
- Раззоков Д., Исмаилова О.Б., Маматкулов Ш.И. и др. // Журн. физ. химии. 2014. Т. 88. № 9. С. 1339.
- Ewen J., Gattinoni C., Thakkar F. et al. // Materials. 2016. V. 9. № 8. P. 651.
- Glova A.D., Volgin I.V., Nazarychev V.M. et al. // RSC Adv. 2019. V. 9. № 66. P. 38834.
- Orekhov N., Ostroumova G., Stegailov V. // Carbon. 2020. V. 170. P. 606.
- Nazarychev V.M., Glova A.D., Volgin I.V. et al. // Int. J. Heat Mass Transf. 2021. V. 165. P. 120639.
- Ruochen Sun, Hui Qi, Pingan Liu et al. // J. Mol. Eng. Mat. 2020. V. 8. P. 2050001.
- Yasen Dai, Zhengrun Chen, Xingyi Liu et al. // Separation and Purification Technology. 2021. V. 279. P. 119717.
- Ponder J.W., Case D.A. // Adv. Prot. Chem. 2003. V. 66. P. 27.
- Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. № 45. P. 11225.
- Vanommeslaeghe K., Hatcher E., Acharya C. et al. // J. Comput. Chem. 2010. V. 31. P. 671.
- Walker R.C., Crowley M.F., Case D.A. // J. Comput. Chem. 2008. V. 29. P. 1019.
- Wang J., Wang W., Kollman P.A. et al. // J. of Molecular Graphics and Modelling. 2006. V. 25.
- Wang J., Wolf R.M., Caldwell J. et al. // J. Comput. Chem., 2004. V. 25. P. 1157.
- Dodda L.S., Cabeza de Vaca I., Tirado-Rives J. et al. // Nucleic Acids Res. 2017. V. 45. № W1. P. W331.
- William J.L., Tirado-Rives J. // Proc. Natl. Acad. Sci. U.S.A. 2005. V. 102. № 19. P. 6665.
- Dodda L.S., Vilseck J.Z., Tirado-Rives J. et al. // J. Phys. Chem. B. 2017. V. 121. № 15. P. 3864.
- Jo S., Kim T., Iyer V.G. et al. // J. Comput. Chem. 2008. V. 29. P. 1859.
- Brooks B.R., Brooks C.L. III, MacKerell A.D. Jr. et al. // J. Comput. Chem. 2009. V. 30. P. 1545.
- Lee J., Cheng X., Swails J.M. et al. // J. Chem. Theory Comput. 2016. V. 12. P. 405.
- Lorentz H.A. // Ann. Phys. 1881. V. 248. P. 127.
- Berthelot D.C.R. // Seances Acad. Sci. 1889. V. 126. P. 1703.
- Good R.J., Hope C.J. // J. Chem. Phys. 1970. V. 53. P. 540.
- Good R.J., Hope C.J. // Ibid. 1971. V. 55. P. 111.
- Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1. P. 19.
- Bussia G., Donadio D., and Parrinello M. // J. Phys. Chem. 2007. V. 126.
- Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684.
- Sun H. // J. Phys. Chem. B. 1998. V. 102. № 38. P. 7338.
- Essmann U., Perera L., Berkowitz M. et al. // J. Chem. Phys. 1995. V. 103. P. 8577.
- Green M.S. // J. Chem. Phys. 1954. V. 22. № 3. P. 398.
- Kubo R. // J. Phys. Soc. Jpn. 1957. V. 12. № 6. P. 570.
- Hess B. // J. Chem. Phys. 2002. V. 116. P. 209.
- Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. P. 2353.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




