An Equation of State of Corundum Based on Planck–Einstein Functions
- 作者: Perevoshchikov A.V.1, Kovalenko N.A.1, Uspenskaya I.A.1
- 
							隶属关系: 
							- Faculty of Chemistry, Lomonosov Moscow State University
 
- 期: 卷 97, 编号 4 (2023)
- 页面: 486-494
- 栏目: CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.04.2023
- URL: https://rjeid.com/0044-4537/article/view/668754
- DOI: https://doi.org/10.31857/S0044453723040234
- EDN: https://elibrary.ru/TGKFZV
- ID: 668754
如何引用文章
详细
The possibility of constructing the equation of state of a crystalline substance based on a linear combination of the Planck–Einstein functions is shown using the example of corundum α-Al2O3. Two versions of the corundum equation of state are obtained on the basis of functions F(V,T) and G(P,T) as a result of the self-consistency of the heat capacity values, the enthalpy increment, PVT data, the coefficient of thermal expansion, and the adiabatic modulus of elasticity. Both equations provide an acceptable description of the above properties in a wide range of variables (up to a pressure of 165 GPa and a temperature of 2250 K).
作者简介
A. Perevoshchikov
Faculty of Chemistry, Lomonosov Moscow State University
														Email: ira@td.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
N. Kovalenko
Faculty of Chemistry, Lomonosov Moscow State University
														Email: ira@td.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
I. Uspenskaya
Faculty of Chemistry, Lomonosov Moscow State University
							编辑信件的主要联系方式.
							Email: ira@td.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
参考
- Перевощиков А.В., Максимов А.И., Бабаян И.И. и др. // Журн. неорган. химии 2023. Т. 68. № 2. https://doi.org/10.31857/S0044457X22601407
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data 2013. V. 58. № 7. P. 2083. https://doi.org/10.1021/je400316m
- Khvan A.V., Uspenskaya I.A., Aristova N.M. et al. // Calphad 2020. V. 68. P. 101724. https://doi.org/10.1016/j.calphad.2019.101724
- Khvan A.V., Dinsdale A.T., Uspenskaya I.A. et al. // Calphad 2018. V. 60. P. 144. https://doi.org/10.1016/j.calphad.2017.12.008
- Uspenskaya I.A., Kulikov L.A. // J. Chem. Eng. Data 2015. V. 60. № 8. P. 2320. https://doi.org/10.1021/acs.jced.5b00217
- D’Amour H., Schiferl D., Denner W. et al. // J. Appl. Phys. 1978. V. 49. № 8. P. 4411. https://doi.org/10.1063/1.325494
- Archer D.G. // J. Phys. Chem. Ref. Data. 1993. V. 22. № 6. P. 1441. https://doi.org/10.1063/1.555931
- Mao H.K., Bell P.M., Shaner J.W. et al. // J. Appl. Phys. 1978. V. 49. № 6. P. 3276. https://doi.org/10.1063/1.325277
- Levin I., Brandon D. // J. Am. Ceram. Soc. 1998. V. 81. № 8. P. 1995. https://doi.org/10.1111/j.1151-2916.1998.tb02581.x
- Fiquet G., Richet P., Montagnac G. // Phys. Chem. Minerals 1999. V. 27. № 2. P. 103. https://doi.org/10.1007/s002690050246
- Perevoshchikov A.V., Maksimov A.I., Kovalenko N.A. et al. // Russ. J. Phys. Chem. 2022. V. 96. № 10. P. 2059. https://doi.org/10.1134/S0036024422100259
- Huang Y.K., Chow C.Y. // J. Phys. D: Appl. Phys 1974. V. 7. № 15. P. 2021. https://doi.org/10.1088/0022-3727/7/15/305
- Finger L.W., Hazen R.M. // J. Appl. Phys. 1978. V. 49. № 12. P. 5823. https://doi.org/10.1063/1.324598
- Dewaele A., Torrent M. // Phys. Rev. B 2013. V. 88. № 6. P. 064107. https://doi.org/10.1103/PhysRevB.88.064107
- Dorogokupets P.I., Sokolova T.S., Dymshits A.M. et al. // Geodyn. Tectonophys. 2016. V. 7. № 3. P. 459. https://doi.org/10.5800/GT-2016-7-3-0217
- Grevel K.D., Burchard M., Faßhauer D.W. et al. // J. Geophys. Res. Solid Earth 2000. V. 105. № B12. P. 27877. https://doi.org/10.1029/2000jb900323
- Goto T., Anderson O.L., Ohno I. et al. // J. Geophys. Res. 1989. V. 94. № B6. P. 7588. https://doi.org/10.1029/JB094iB06p07588
- Richet P., Xu J.-A., Mao H.-K. // Phys. Chem. Minerals 1988. V. 16. P. 207. https://doi.org/10.1007/BF00220687
- Krupka K.M., Robie R.A., Hemingway B.S. // Am. Mineral 1979. V. 64. P. 86.
- Andrews J.T.S., Norton P.A., Westrum E.F. // J. Chem. Thermodynamics 1978. V. 10. P. 949. https://doi.org/10.1016/0021-9614(78)90056-3
- Inaba A. // J. Chem. Thermodynamics 1983. V. 15. P. 1137. https://doi.org/10.1016/0021-9614(83)90004-6
- Fugate R.Q., Swenson C.A. // J. Appl. Phys. 1969. V. 40. № 7. P. 3034. https://doi.org/10.1063/1.1658118
- Furukawa G.T., Douglas T.B., Mccoskey R.E. et al. // J. Res. Natl. Bur. Stand. 1956. V. 57. № 2. https://doi.org/10.6028/JRES.057.008
- Tan Z., Yin A., Chen S. et al. // Thermochim. Acta 1988. V. 123. P. 105. https://doi.org/10.1016/0040-6031(88)80014-5
- Tan Z.-C., Shi Q., Liu B.-P. et al. // J. Therm. Anal. Calorim. 2008. V. 92. № 2. P. 367. https://doi.org/10.1007/s10973-007-8954-2
- Tan Z., Ye J., Sun Y. et al. // Thermochim. Acta 1991. V. 183. P. 29. https://doi.org/10.1016/0040-6031(91)80442-L
- Tan Z., Zhang J., Meng S. et al. // Sci. China, Ser. B. 1999. V. 42. № 4. P. 382. https://doi.org/10.1007/BF02873967
- Sorai M., Kaji K., Kaneko Y. // J. Chem. Thermodynamics 1992. V. 24. P. 167. https://doi.org/10.1016/S0021-9614(05)80046-1
- Ditmars D.A., Douglas T.B. // J. Res. Natl. Bur. Stand. A Phys. Chem. 1971. V. 75. № 5. P. 401. https://doi.org/10.6028/JRES.075A.031
- Richet P., Denielou L., Petitet J.P. et al. // Geochim. Cosmochim. Acta 1982. V. 46. P. 2639. https://doi.org/10.1016/0016-7037(82)90383-0
- Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. Natl. Bur. Stand. 1982. V. 87. № 2. P. 159. https://doi.org/10.6028/jres.087.012
- Richet P., Fiquet G. // J. Geophys. Res. 1991. V. 96. № B1. P. 445. https://doi.org/10.1029/90JB02172
- Петухов В., Чеховской В., Багдасаров Х. // Теплофизика высоких температур 1973. Т. 11. № 5. C. 1083.
- Aldebert P., Traverse J.-P. // High Temp. High Pres. 1984. V. 16. № 2. P. 127.
- White G.K., Minges M.L., Castanet R.B. et al. // Int. J. Thermophys. 1997. V. 18. № 5. P. 1269. https://doi.org/10.1007/BF02575261
- Schauer A. // Can. J. Phys. 1965. V. 43. P. 523. https://doi.org/10.1139/p65-049
- Wachtman J.B., Scuderi T.G., Cleek G.W. // J. Am. Ceram. Soc. 1962. V. 45. № 7. P. 319. https://doi.org/10.1111/j.1151-2916.1962.tb11159.x
- Dubrovinsky L., Saxená Lazor S.P., Dubrovinsky L.S. et al. // Phys. Chem. Minerals 1998. V. 25. P. 434. https://doi.org/10.1007/s002690050133
- Tarumi R., Ledbetter H., Ogi H. et al. // Philos. Mag. 2013. V. 93. № 36. P. 4532. https://doi.org/10.1080/14786435.2013.837225
- Dubrovinsky L.S., Saxena S.K. // Phys. Chem. Minerals 1997. V. 24. № 8. P. 547. https://doi.org/10.1007/s002690050070
- Sato Y., Akimoto S.I. // J. Appl. Phys. 1979. V. 50. № 8. P. 5285. https://doi.org/10.1063/1.326625
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					


