CALPHAD Modelling of Ag–Pd–Sn Ternary System
- Autores: Pavlenko A.S.1, Zhmurko G.P.1, Kabanova E.G.1, Kareva M.A.1, Ptashkina E.A.1, Kuznetsov V.N.1
- 
							Afiliações: 
							- Department of Chemistry, Lomonosov Moscow State University
 
- Edição: Volume 97, Nº 9 (2023)
- Páginas: 1329-1335
- Seção: ХЕМОИНФОРМАТИКА И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
- ##submission.dateSubmitted##: 26.02.2025
- ##submission.datePublished##: 01.09.2023
- URL: https://rjeid.com/0044-4537/article/view/668670
- DOI: https://doi.org/10.31857/S0044453723090145
- EDN: https://elibrary.ru/XOYJQW
- ID: 668670
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
CALPHAD modelling of the Ag–Pd–Sn ternary system has been performed. The disordered phases, the melt and the fcc phase were described using the substitutional solution model. Sublattice models were used to describe intermetallic compounds and the ternary phase. The two-sublattice model (Ag,Pd)4(Ag, Sn) used for the ternary phase made it possible to reproduce the inclination of its homogeneity range. The results of the thermodynamic calculation of the Ag–Pd–Sn system are in good agreement with the experimental data on phase equilibria and enthalpies of formation of the liquid. The agreement with the data on the partial Gibbs energy of tin in the liquid is somewhat worse.
Palavras-chave
Sobre autores
A. Pavlenko
Department of Chemistry, Lomonosov Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
G. Zhmurko
Department of Chemistry, Lomonosov Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
E. Kabanova
Department of Chemistry, Lomonosov Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
M. Kareva
Department of Chemistry, Lomonosov Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
E. Ptashkina
Department of Chemistry, Lomonosov Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
V. Kuznetsov
Department of Chemistry, Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: vnk@general.chem.msu.ru
				                					                																			                												                								Moscow, Russia						
Bibliografia
- Shin H.-J., Kwon Y.H., Seol H.-J. // J. Mech. Behav. Biomed. Mater. 2020. V. 107. P. 103728. https://doi.org/10.1016/j.jmbbm.2020.103728
- Zhang R., Peng M., Ling L. et al. // Chem. Eng. Sci. 2019. V. 199. P. 64–78. https://doi.org/10.1016/j.ces.2019.01.018
- Zerdoumi R., Armbrüster M. // ACS Appl. Energy Mater. 2021. V. 4. № 10. P. 11279. https://doi.org/10.1021/acsaem.1c02119
- Lee C.Y., Yang S.P., Yang C.H. et al. // Surf. Coat. Technol. 2020. V. 395. P. 125879. https://doi.org/10.1016/j.surfcoat.2020.125879
- Sundman B., Lukas H.L., Fries S.G. Computational Thermodynamics: The Calphad Method. New York: Cambridge University Press, 2007. C. 313.
- Pavlenko A.S., Ptashkina E.A., Kabanova E.G. et al. // Calphad. 2023. V. 81. P. 102533. https://doi.org/10.1016/j.calphad.2023.102533
- Laurie G.H., Pratt. J.N. // J. Chem. Soc., Faraday Trans. 1964. V. 60. P. 1391–1401. https://doi.org/10.1039/TF9646001391
- Luef C., Paul A., Flandorfer H. et al. // J. Alloys Compd. 2005. V. 391. P. 67–76. https://doi.org/10.1016/j.jallcom.2004.08.056
- Pavlenko A.S., Kabanova E.G., Kuznetsov V.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 13. P. 2691. https://doi.org/10.1134/s0036024420130178
- Thermo-Calc Software PURE5/SGTE Pure Element Database. https://thermocalc.com/about-us/methodology/the-calphad-methodology/assessment-of-thermodynamic-data/
- Ghosh G., Kantner C., Olson G.B. // J. Phase Equilibria. 1999. V. 20. № 3. 295. https://doi.org/10.1361/105497199770335811
- Gierlotka W., Huang Y.C., Chen S.W. // Metall. Mater. Trans. A. 2008. V. 39. № 13. P. 3199. https://doi.org/10.1007/s11661-008-9671-6
- Vassilev G., Gandova V., Milcheva N. et al. // Calphad. 2013. V. 43. P. 133. https://doi.org/10.1016/j.calphad.2013.03.003
- Cui S., Wang J., You Z. et al. // Intermetallics. 2020. V. 126. P. 106945. https://doi.org/10.1016/j.intermet.2020.106945
- Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345. https://doi.org/10.1021/ie50458a036
- Toop G.W. // Trans. Metall. Soc. AIME. 1965. V. 233. № 5. P. 850.
- Andersson J.-O., Helander T., Höglund L. et al. // Calphad. 2002. V. 26. № 2. P. 273. https://doi.org/10.1016/s0364-5916(02)00037-8
- Pavlenko A.S., Ptashkina E.A., Zhmurko G.P. et al. // Rus. J. Phys. Chem. A. 2023. V. 97. P. 42. https://doi.org/10.1134/S0036024423010235
- Pavlenko A.S., Kabanova E.G., Kareva M.A. et al. // Materials. 2023. V. 16. № 4. P. 1690. https://doi.org/10.3390/ma16041690
- Kuznetsov V.N., Kabanova E.G. // Calphad. 2015. V. 100. № 51. P. 346. https://doi.org/10.1016/j.calphad.2015.01.011
- Cui S., Wang J., Jung I.H. // Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 2022. V. 53. № 12. P. 4296. https://doi.org/10.1007/s11661-022-06825-9
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




