Carbon nanomaterials. Electron paramagnetic resonance
- Authors: Ulyanov А.N.1, Kuznetsova N.N.1, Savilov S.V.1
- 
							Affiliations: 
							- M. V. Lomonosov Moscow State University
 
- Issue: Vol 99, No 4 (2025)
- Pages: 529-536
- Section: ПРОБЛЕМЫ, ТЕНДЕНЦИИ РАЗВИТИЯ И АКТУАЛЬНЫЕ ЗАДАЧИ ФИЗИЧЕСКОЙ ХИМИИ
- Submitted: 14.06.2025
- Accepted: 14.06.2025
- Published: 15.06.2025
- URL: https://rjeid.com/0044-4537/article/view/684368
- DOI: https://doi.org/10.31857/S0044453725040014
- EDN: https://elibrary.ru/FOLTBG
- ID: 684368
Cite item
Abstract
Electron paramagnetic resonance (EPR) is a widely used instrumental research method in chemistry, physics, biology, and materials science that can be successfully applied to characterize the electronic structure of carbon nanomaterials. This work presents a brief review of studies of various types of carbon nanostructures (CNS) by EPR, including measurement techniques, principles of spectral data processing and interpretation, and experimental results. The relationship between the properties of CNS and the nearest environment of paramagnetic centers, oxidation, and degradation of materials with time is analyzed.
Full Text
 
												
	                        About the authors
А. N. Ulyanov
M. V. Lomonosov Moscow State University
														Email: savilov@mail.ru
				                					                																			                								
Department of Chemistry
Russian Federation, Moscow, 119991N. N. Kuznetsova
M. V. Lomonosov Moscow State University
														Email: savilov@mail.ru
				                					                																			                								
Department of Chemistry
Russian Federation, Moscow, 119991S. V. Savilov
M. V. Lomonosov Moscow State University
							Author for correspondence.
							Email: savilov@mail.ru
				                					                																			                								
Department of Chemistry
Russian Federation, Moscow, 119991References
- B. Wang W., Likodimos V., Fielding A.J. et al. // Carbon N.Y. 2020. V. 160. P. 236.
- Kempiński M. // Mater. Lett. 2018. V. 230. P. 180.
- Sun Y., Wang X., Tang B. et al. // Mater. Lett. 2017. V. 189. P. 54.
- Fei Y., Fang S., Hu Y.H. // Chem. Eng. J. 2020. V. 397. P. 125408.
- Tiwari S., Purabgola A., Kandasubramanian B. // J. Alloys Compd. 2020. V. 825. P. 153954.
- Xia H., Wang Y., Lin J. et al. // Nanoscale Res. Lett. 2012. V. 7. P. 33.
- Chen X., Wang L., Li W. et al. // Nano Res. 2013. V. 6. P. 619.
- Lebepe T.C., Parani S., Vuyelwa N. et al. // Mater. Lett. 2020. V. 279. P. 128470.
- Wang W., Yokoyama A., Liao S. et al. // Mater. Sci. Eng. C. 2008. V. 28. P. 1082.
- Vidhya M.S., Ravi G., Yuvakkumar R. et al. // Mater. Lett. 2020. V. 276. P. 128193.
- Wang C., Fu Q., Wen D. // Zeitschrift Fur Phys. Chemie. 2018. V. 232. P. 1647.
- Moreno-Castilla C., Maldonado-Hódar F.J. // Carbon N.Y. 2005. V. 43. P. 455.
- Lee K.S., Phiri I., Park C.W. et al. // Mater. Lett. 2020. V. 275. P. 128133.
- Kumar M., Chauhan H., Satpati B. et al. // Zeitschrift Fur Phys. Chemie. 2019. V. 233. P. 85.
- Gong Y., Ping Y., Li D. et al. // Appl. Surf. Sci. 2017. V. 397. P. 213.
- Yu Q., Dong T., Qiu R. et al. // Mater. Res. Bull. 2021. V. 138. P. 111211.
- Ershadi M., Javanbakht M., Mozaffari S.A. et al. // J. Alloys Compd. 2020. V. 818. P. 152912.
- Ampadu E.K., Kim J., Oh E. et al. // Mater. Lett. 2020. V. 277. P. 128323.
- Li J.L., Bai G.Z., Feng J.W. et al. // Carbon N.Y. 2005. V. 43. P. 2649.
- Soo L.T., Loh K.S., Mohamad A.B. et al. // J. Alloys Compd. 2016. V. 677. P. 112.
- Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Appl. Surf. Sci. 2019. V. 488. P. 51.
- Kapteijn F., Moulijn J.A., Matzner S. et al. // Carbon N.Y. 1999. V. 37. P. 1143.
- Chernyak S.A., Ivanov A.S., Strokova N.E. et al. // J. Phys. Chem. C. 2016. V. 120. P. 17465.
- Sun M., Zhang G., Liu H. et al. // Sci. China Mater. 2015. V. 58. P. 683.
- Li Y., Ai C., Deng S. et al. // Mater. Res. Bull. 2021. V. 134. P. 111094.
- Duraisamy V., Krishnan R., Kumar S.M.S. // Mater. Res. Bull. 12022. V. 49. P. 111729.
- Diamantopoulou Α., Glenis S., Zolnierkiwicz G. et al. // J. Appl. Phys. 2017. V. 121. P. 043906.
- Augustyniak-Jabłokow M.A., Strzelczyk R., Fedaruk R. // Carbon N.Y. 2020. V. 168. P. 665.
- Tadyszak K., Chybczyńska K., Ławniczak P. et al. // J. Magn. Magn. Mater. 2019. V. 492. P. 165656.
- Ćirić L., Sienkiewicz A., Djokić D.M. et al. // Phys. Status Solidi Basic Res. 2010. V. 247. P. 2958.
- Cirić L., Sienkiewicz A., Gaál R. et al. // Phys. Rev. B. 2012. V. 86. P. 195138.
- Kempiński M., Los S., Florczak P. et al. // Appl. Phys. Lett. 2018. V. 113. P. 084102.
- Ulyanov A., Stolbov D., Savilov S. // Zeitschrift Für Phys. Chemie. 2022. V. 236. P. 79.
- Ulyanov A.N., Maslakov K.I., Savilov S.V. et al. // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2023. V. 287. P. 116119.
- Savilov S.V., Ulyanov A.N., Desyatov A.V. et al. // Solid State Sci. 2022. V. 132. P. 106996.
- Savilov S., Suslova E., Epishev V. et al. // Nanomaterials. 2021. V. 11. P. 352.
- Cao M., Du C., Guo H. et al. // Compos. Part A Appl. Sci. Manuf. 2018. V. 115. P. 331.
- Ulyanov A.N., Suslova E.V., Savilov S.V. // Mendeleev Commun. 2023. V. 33. P. 127.
- Kempiński M., Śliwińska-Bartkowiak M., Kempiński W. // Rev. Adv. Mater. Sci. 2007. V. 14. P. 163.
- Szirmai P., Márkus B.G., Dóra B. et al. // Phys. Rev. B. 2017. V. 96. P. 075133.
- Joly V.L.J., Takahara K., Takai K. et al. // Ibid. B. 2010. V. 81. P. 115408.
- Ramakrishna Matte H.S.S., Subrahmanyam K.S., Rao C.N.R. // Phys. Chem. C. 2009. V. 113. P. 9982.
- Yazyev O.V., Helm L. // Phys. Rev. B. 2007. V. 75. P. 125408.
- Augustyniak-Jabłokow M.A., Tadyszak K., Maćkowiak M. et al. // Phys. Status Solidi — Rapid Res. Lett. 2011. V. 5. P. 271.
- Пул Ч., Техника ЭПР-спектроскопии. М. Мир, 1970. 549 с.
- Ulyanov A.N., Quang H.D., Pismenova N.E. et al. // Solid State Commun. 2012. V. 152. P. 1556.
- Ulyanov A.N., Suslova E.V., Maslakov K.I. et al. // Funct. Mater. Lett. 2022. V. 15. P. 2251040.
- Singh C., Nikhil S., Jana A. et al. // Chem. Commun. 2016. V. 52. P. 12661.
- Lin T.T., Lai W.H., Lü Q.F. et al. // Electrochim. Acta. 2015. V. 178. P. 517.
- Huang Y.H., Liao C.S., Wang Z.M. et al. // Phys. Rev. B. 2002. V. 65. P. 184423.
- Wang B., Fielding A.J., Dryfe R.A.W. et al. // J. Phys. Chem. C. 2019. V. 123. P. 22556.
- Ulyanov A.N., Yang D.S., Mazur A.S. et al. J. Appl. Phys. 2011. V. 109. P. 123928.
- Ghosh A., Pinto J.W.M., Frota H.O. // J. Magn. Reson. 2013. V. 227. P. 87.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





