Synthesis of complex alumina-cobalt systems using thermally activated gibbsite product
- Autores: Zhuzhgov A.V.1, Gorkusha A.S.1,2, Suprun E.A.1, Lysikov A.I.1,2, Isupova L.A.1
- 
							Afiliações: 
							- G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
 
- Edição: Volume 99, Nº 1 (2025)
- Páginas: 68-83
- Seção: CHEMICAL KINETICS AND CATALYSIS
- ##submission.dateSubmitted##: 01.06.2025
- ##submission.datePublished##: 17.04.2025
- URL: https://rjeid.com/0044-4537/article/view/681869
- DOI: https://doi.org/10.31857/S0044453725010064
- EDN: https://elibrary.ru/EISJJA
- ID: 681869
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Using the methods of X-ray phase, thermal, microscopic, adsorption, and chemical analyses, the possibility of obtaining high-percentage mixed alumina-cobalt spinels by hydrochemical treatment under room or hydrothermal conditions of powder suspensions of the product of centrifugal thermal activation of gibbsite in aqueous solutions of cobaltous nitrate is studied and shown. Thermal treatment of hydrochemical interaction products, viz. xerogels in the range of 350–850°C, is established to lead to the formation of Co3O4 and CoAl2O4 spinel phases with their different ratio depending on the synthesis conditions. Thus, hydrochemical treatment of suspensions at room temperature provides, after calcination, the predominant formation of the Co3O4 phase while hydrothermal treatment at 150°C leads to a deeper interaction of suspension components at the treatment stage, forming CoAl2O4 after thermal treatment. It is noted that the maximum content of spinel of CoAl2O4 type (90% according to H2-TPR data) is observed for the hydrothermal product calcined at 850°C. The considered method is concluded to allow obtaining complex alumina-cobalt compounds with different phase ratio, reducing the number of initial reagents, preparation stages, completely excluding effluents, as well as reducing the total amount of nitrates by 75 wt.%, as compared to the nitrate classical co-precipitation scheme.
Texto integral
 
												
	                        Sobre autores
A. Zhuzhgov
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: zhuzhgov@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
A. Gorkusha
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: zhuzhgov@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
E. Suprun
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
														Email: zhuzhgov@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
A. Lysikov
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
														Email: zhuzhgov@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk; Novosibirsk						
L. Isupova
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
														Email: zhuzhgov@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
Bibliografia
- Li F., Duan X. // Struct. Bond. 2006. V. 119. P. 193.
- Tian Li., Huang K., Liu Y. et al. // J. Solid State. Chem. 2011. V. 184. P. 2961.
- Merikhi J., Jungk H., Feldmann C. // J. Mat. Chem. 2002. V. 10. P. 1311.
- Veronesi P., Leonelli C., Bondioli F. // Technologies. 2017. V. 5. P. 42.
- Rangappa D., Ohara S., Naka T. et al. // J. Mat. Chem. 2007. V. 17. P. 4426.
- Tang Y., Liu Y., Yu S. et al. // J. Power Sour. 2014. V. 256. P. 160.
- Khodakov A.Y., Chu W., Fongarland P. et al. // Chem. Rev. 2007. V. 107. P. 1692.
- Jacobs G., Das T.K., Zhang Y. et al. // App. Catal. A: General. 2002. V. 233. P. 263.
- Narayanan S., Unnikrishnan R. // J. Chemical Society, Faraday Transactions. 1998. V. 94. P. 1124.
- Gandia L.M., Montes M. // J. Molecular Catal. 1994. V. 94. P. 347.
- Ragupathi С., Vijaya J.D., Narayanan S. et al. // Ceram. Intern. 2015. V. 41. P. 2069.
- Choya A., Rivas B., Gutiérrez-Ortiz J.I. et al. // Materials. 2019. V. 19. P. 1.
- Moraz-Lazaro J.P., Blanco O., Rodriguez-Betancourtt V.M. et al. // Sensor and Actuators B: Chemical. 2016. V. 226. P. 518.
- Yang He., Goldbach A., Shen W. // Int. J. Hydrogen Energy. 2024. V. 51. P. 1360.
- Das T., Kweon S., Nah In. et al. // Cryogenics. 2015. V. 69. P. 36.
- Жужгов А.В., Криворучко О.П., Исупова Л.А. и др. // Катализ промышленности. 2017. Т. 17. № 5. С. 346.
- Буянов Р.А., Пармон В.Н. // Катализ в промышленности. 2017. Т. 17. № 5. С. 390.
- Жужгов А.В., Криворучко О.П., Исупова Л.А. // Журн. физ. химии. 2020. Т. 94. № 1. С. 50.
- Boeva O., Antonov A., Zhavoronkova K. // Catal. Comm. 2021. V. 148. P. 106173.
- Lu H.T., Li W., Miandoab E.S. et al. // Front. Chem. Sci. Eng. 2021. V. 15. P. 464.
- Aasadni M., Mehrpooya M., Ghorbani B. // J. Cleaner Production. 2021. V. 278. P. 123872.
- Wang C., Lui S., Lui L. et al. // J. Mater. Chem. Phys. 2006. V. 96. P. 361.
- Casado P.G., Rasines I. // J. Solid state Chem. 1984. V. 52. P. 187.
- Li W., Li J., Guo J. // J. Eur. Ceram. Soc. 2003. V. 23. P. 2289.
- Федотов M.A., Тарабан Е.А., Криворучко О.П. и др. // Журн. неорган. химии. 1990. Т. 35. № 5. С. 1226.
- Bai C.S., Soled S., Dwight K. // J. Solid State Chem. 1991. V. 91. P. 148.
- Fogg A.M., Williams G.R., Chester R. et al. // J. Mater. Chem. 2004. V. 14. P. 2369.
- Williams G.R., Moorhouse S.J., Timothy J.P. et al. // Dalton Trans. 2011. V. 40. P. 6012.
- Криворучко О.П., Буянов Р.А., Парамзин С.М. и др. // Кинетика и катализ. 1988. Т. 29. № 1. С. 252.
- Буянов Р.А., Криворучко О.П., Золотовский Б.П. // Изв. СО АН СССР. Сер. хим. наук. 1986. № 11. Вып. 4. С. 39.
- Ingram-Jones V.J., Davies R.C.T., Southern J.C. et al. // J. Mat. Chem. 1996. V. 6. P. 73.
- Танашев Ю.Ю., Мороз Э.М., Исупова Л.А. и др. // Кинетика и катализ. 2007. Т. 48. № 1. С. 161.
- Zhuzhgov A.V., Kruglyakov V.Y., Glazneva T.S. et al. // Chemistry. 2022. V. 4. P. 316.
- Жужгов А.В., Кругляков В.Ю., Супрун Е.А. и др. // Журн. прикл. химии. 2022. Т. 95. № 4. С. 450.
- Zhuzhgov A.V., Isupova L.A., Suprun E.A. et al. // Chem. Engineering. 2023. V. 7. № 4. 71:1–16.
- Ivanova Y., Zhuzhgov A., Isupova L. // Inorganic Chemistry Communications. 2024. V. 162. P. 1.
- Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М.: Типография Паладин, ООО “Принта”, 2010. 288 с.
- Косенко Н.Ф. // Изв. высших учебных заведений. 2011. Т. 54. № 5. С. 3.
- Krivoruchko O.P., Plyasova L.M., Zolotovskii B.P. et al. // React. Kinet. Catal. Lett. 1983. V. 22. № 3–5. P. 375.
- Van Nordstrand R.A., Hettinger W.P., Keith C.D. // Nature. 1956. V. 177. P. 713.
- Шефер К.И., Черепанова С.В., Мороз Э.М. и др. // Журн. структур. химии. 2010. Т. 51. № 1. С. 137.
- Danilevich V., Isupova L., Parmon V. // Cleaner Engineering and Technology. 2021. V. 3. P. 1.
- Исупова Л.А., Иванова Ю.А. // Докл. РАН. Химия, науки о материалах (Докл. Академии наук до 2019 года). 2023. Т. 511. С. 60.
- Lin H.K., Wang C.B., Chiu H.C. et al. // Catal. Lett. 2023. V. 86. P. 63.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







