Фентон-подобные окислительные системы для деструкции азокрасителей в водных растворах
- Авторы: Сизых М.Р.1, Батоева А.А.1
- 
							Учреждения: 
							- Байкальский институт природопользования CO РАН
 
- Выпуск: Том 97, № 12 (2023)
- Страницы: 1707-1717
- Раздел: ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ
- Статья получена: 27.02.2025
- Статья опубликована: 01.12.2023
- URL: https://rjeid.com/0044-4537/article/view/669126
- DOI: https://doi.org/10.31857/S0044453723120270
- EDN: https://elibrary.ru/RSTUNC
- ID: 669126
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Изучены кинетические закономерности деструкции азокрасителя метилового оранжевого (МО) в фотоинициированных окислительных системах, с использованием в качестве источника квазисолнечного излучения ксеноновой лампы (UV-Vis). По эффективности и скорости деструкции красителя рассмотренные окислительные системы можно выстроить в следующий ряд: {UV-Vis} < {UV-Vis/S2O\(_{8}^{{2 - }}\)} < {S2O\(_{8}^{{2 - }}\)/Fe0} < {UV-Vis/S2O\(_{8}^{{2 - }}\)/Fe0} < {UV-Vis/S2O\(_{8}^{{2 - }}\)/Fe2+}. Установлено, что лишь в фотоинициированных Фентон-подобных окислительных системах происходит не только полное превращение МО, но и его глубокая минерализация в водном растворе, снижение содержания общего органического углерода достигает 60%. При этом удельная каталитическая активность ионов железа в комбинированной системе {UV-Vis/S2O\(_{8}^{{2 - }}\)/Fe0} значительно выше чем в {UV-Vis/S2O\(_{8}^{{2 - }}\)/Fe2+}. С использованием ингибиторов радикальных реакций доказано, что в комбинированной системе {UV-Vis/S2O\(_{8}^{{2 - }}\)/Fe0} в окислительной деструкции принимают участие как гидроксильные, так и сульфатные анион-радикалы. Установлено ингибирующее влияние анионов (гидрокарбонатов, хлоридов, нитратов, сульфатов) и природного растворенного органического вещества (Suwanee River 2R101N) на процесс минерализации общего органического углерода при окислительной деструкции МО в комбинированной системе {UV-Vis/S2O\(_{8}^{{2 - }}\)/Fe0}.
Об авторах
М. Р. Сизых
Байкальский институт природопользования CO РАН
														Email: abat@binm.ru
				                					                																			                												                								Россия, Улан-Удэ						
А. А. Батоева
Байкальский институт природопользования CO РАН
							Автор, ответственный за переписку.
							Email: abat@binm.ru
				                					                																			                												                								Россия, Улан-Удэ						
Список литературы
- Han M., Wang H., Jin W. et al. // J. Environ. Sci. 2023. V. 128. P. 181. https://doi.org/10.1016/j.jes.2022.07.037
- Li L., Yuan X., Zhou Zh. et al. //J. Clean. Prod. V. 372. P. 133420. https://doi.org/10.1016/j.jclepro.2022.133420
- Ramos B., Ferreira L.B., Palharim P.H. et al. // Chem. Eng. J. Adv. 2023. V. 14. P. 100473. https://doi.org/10.1016/j.ceja.2023.100473
- Giannakis S., Samoili S., Rodríguez-Chueca J. // Curr. Opin. Green Sustain. Chem. 2021. V. 29. P. 100456. https://doi.org/10.1016/j.cogsc.2021.100456
- Linden K.G., Mohseni M. // Compr. Water Q. Purif. 2014. V. 2. P. 148.
- Karim A.V., Jiao Y., Zhou M., Nidheesh P. // Chemosphere. 2021. V. 265. P. 129057. https://doi.org/10.1016/j.chemosphere.2020.129057
- Ghanbari F., Moradi M., Gohari F. // J. Water Process. Eng. 2016. V. 9. P. 22. https://doi.org/10.1016/j.jwpe.2015.11.011
- Wang W., Chen M., Wang D. et al. // Sci. Total Environ. 2021. V. 772. P. 145522 https://doi.org/10.1016/j.scitotenv.2021.145522
- Zawadzki P. // Curr. Opin. Green Sustain. Chem. 2022. V. 37. P. 100837. https://doi.org/10.1016/j.coche.2022.100837
- Gao Y., Champagne P., Blair D. // Water Sci. Technol. 2020. V. 81. P. 853. https://doi.org/10.2166/wst.2020.190
- Khan J.A., He X., Khan H.M. // Chem. Eng. J. 2013. V. 218. P. 376. https://doi.org/10.1016/j.cej.2012.12.055
- Ahmed M.M., Chiron S. //Water Res. 2014. V. 48. P. 229. https://doi.org/10.1016/j.watres.2013.09.033
- Yang J., Zhu M., Dionysiou D.D. // Water Res. 2021. V. 189. P. 116627. https://doi.org/10.1016/j.watres.2020.116627
- Pozdnyakov I.P., Glebov E.M., Plyusnin V.F. et al. // Mendeleev Commun. 2020. V. 10. P. 185. https://doi.org/10.1070/MC2000v010n05ABEH001316
- Сизых М.Р., Батоева А.А. // Журн. физ. химии. 2019. Т. 93. № 12. С. 1773. (Sizykh M.R., Batoeva A.A. // Rus. J. Phys. Chem. A. 2019. V. 93. P. 2349.) https://doi.org/10.1134/S003602441912029X
- Ioannidi A., Frontistis Z., Mantzavinos D. // J. Environ. Chem. Eng. 2018. V. 6. P. 2992. https://doi.org/10.1016/j.jece.2018.04.049
- Rivas-Zaballos I., Romero-Martínez L., Moreno-Garrido I. // J. Water Process. Eng. 2023. V. 51. P. 103361. https://doi.org/10.1016/j.jwpe.2022.103361
- Omri A., Hamza W., Benzina M. // J. Photochem. Photobiol. A Chem. 2020. V. 393. P. 112444. https://doi.org/10.1016/j.jphotochem.2020.112444
- Li P., Liu Z., Wang X. et al. // Chemosphere. 2017. V. 180. P. 100. https://doi.org/10.1016/j.chemosphere.2017.04.019
- Zhang L., Xiao C., Li Z. et al. // Appl. Surf. Sci. 2023. V. 618. P. 156595. https://doi.org/10.1016/j.apsusc.2023.156595
- Wang J., Wang S. // Chem. Eng. J. 2021. V. 411. P. 128392. https://doi.org/10.1016/j.cej.2020.128392
- Хандархаева М.С., Батоева А.А., Асеев Д.Г., Сизых М.Р. // Журн. прикл. химии. 2015. Т. 88. № 5. С. 1420 [Khandarkhaeva M.S., Batoeva A.A., Aseev D.G., Sizykh M.R. // Russ. J. Appl. Chem. 2015. V. 88. P. 1605.].
- Mengqi H., Hui W., Wei J. // J. Environ. Sci. (China). 2023. V. 128. P. 181. https://doi.org/10.1016/j.jes.2022.07.037
- Jiang X., Wu Y., Wang P. et al. // Environ. Sci. Pollut. Res. 2013. V. 20. P. 4947. https://doi.org/10.1007/s11356-013-1468-5
- Rodriguez S., Santos A., Romero A. // Chem. Eng. J. 2017. V. 318. P. 197. https://doi.org/10.1016/j.cej.2016.06.057
- Oh S.-Y., Kang S.-G., Chiu P.C. // Sci. Total Environ. 2010. V. 408. P. 3464. https://doi.org/10.1016/j.scitotenv.2010.04.032
- Liang C., Guo Y.Y. // Environ. Sci. Technol. 2010. V. 44. P. 8203. https://doi.org/10.1021/es903411a
- Michael-Kordatou I., Iacovou M., Frontistis Z. et al. // Water Res. 2015. V. 85. P. 346. https://doi.org/10.1016/j.watres.2015.08.050
- Li B., Li L., Lin K. et al. // Ultrason. Sonochem. 2013. V. 20. P. 855. https://doi.org/10.1016/j.ultsonch.2012.11.014
- Joseph J.M., Destaillats H., Hung H.M., Hoffman M.R. // J. Phys. Chem. A. 2000. Vol. 104. P. 301–307. https://doi.org/10.1021/jp992354m
- Ge D., Zeng Z., Arowo M., Zou H. // Chemosphere. 2016. V. 146. P. 413. https://doi.org/10.1016/j.chemosphere.2015.12.058
- Методика экспрессного определения интегральной химической токсичности питьевых, поверхностных, грунтовых, сточных и очищенных сточных вод с помощью бактериального теста “Эколюм”. Методические рекомендации № 01.021-07. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2007. 16 с.
- Wang L., Zhang Q., Chen B. et al. // Water Res. 2020. V. 174. P. 115605. https://doi.org/10.1016/j.watres.2020.115605
- Ghanbari F., Riahi M., Kakavandi B. et al. // J. Water Process. Eng. 2020. V. 36. P. 101321. https://doi.org/10.1016/j.jwpe.2020.101321
- Сизых М.Р., Батоева А.А., Мункоева В.А. // Журн. физ. хим. 2021. Т. 95. С. 947. (Sizykh M.R., Batoeva A.A., Munkoeva V.A. // Rus. J. Phys. Chem. A. 2021. V. 95. P. 1230.) https://doi.org/10.1134/S0036024421060236
- Wang J., Wang S. // Chem. Eng. J. 2021. V. 411. P. 128392. https://doi.org/10.1016/j.cej.2020.128392
- Fang G.-D., Dionysiou D. D., Wang Y. et al. // J. Hazard. Mater. 2012. V. 227–228. P. 394. https://doi.org/10.1016/j.jhazmat.2012.05.074
- Luo C., Ma J., Jiang J. et al. // Water Res. 2015. V. 80. P. 99. https://doi.org/10.1016/j.watres.2015.05.019
- Yu X.-Y., Barker J.R. // J. Phys. Chem. A. 2003. V. 107. P. 1313. https://doi.org/10.1021/jp0266648
- Yang S., Zhang X., Tang J., Zhang A. // J. Environ. Chem. Eng. 2022. V. 10. P. 108806 https://doi.org/10.1016/j.jece.2022.108806
- Fan J., Guo Y., Wang J., Fan M. // J. Hazard. Mater. 2009. V. 166. P. 904. https://doi.org/10.1016/j.jhazmat.2008.11.091
- Basfar A.A., Mohamed K.A., Al-Abduly A.J., Al-Shahrani A.A. // Ecotoxicol. Environ. Saf., 2009. V. 72. P. 948. https://doi.org/10.1016/j.ecoenv.2008.05.006
- Garbin J.R., Milori D.M.B.P., Simões M.L., da Silva W.T et al. // Chemosphere. 2007. V. 66. P. 1692. https://doi.org/10.1016/j.chemosphere.2006.07.017
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 







