Теплоемкость и термодинамические функции твердого раствора Er2O3∙2HfO2
- Authors: Гуськов А.В.1, Гагарин П.Г.1, Гуськов В.Н.1, Хорошилов А.В.1, Гавричев К.С.1
- 
							Affiliations: 
							- Институт общей и неорганической химии им. Н.С. Курнакова РАН
 
- Issue: Vol 98, No 1 (2024)
- Pages: 65-70
- Section: CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
- Submitted: 27.02.2025
- Published: 19.07.2024
- URL: https://rjeid.com/0044-4537/article/view/669089
- DOI: https://doi.org/10.31857/S0044453724010102
- EDN: https://elibrary.ru/SFUIJB
- ID: 669089
Cite item
Abstract
Изобарная теплоемкость образца твердого раствора ЕГ2О3∙2HfOi, охарактеризованного методами РФА, электронной микроскопии и химического анализа, измерена методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии в интервале 2.4–1807 K; рассчитаны термодинамические функции. Определен вклад аномалии Шоттки в области 2.4–300 K.
About the authors
А. В. Гуськов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
							Author for correspondence.
							Email: a.gus@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Москва						
П. Г. Гагарин
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: a.gus@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Москва						
В. Н. Гуськов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: a.gus@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Москва						
А. В. Хорошилов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: a.gus@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Москва						
К. С. Гавричев
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: a.gus@igic.ras.ru
				                					                																			                												                	Russian Federation, 							Москва						
References
- Andrievskaya E.R. // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/jeurceramsoc.2008.01.009
- Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. Москва: «Наука», 1985. 261 с.
- Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Журн. физ. химии. 2022. Т. 96. С. 1230. https://doi.org/10.31857/S004445372209014X [Guskov A.V., Gagarin P.G., Guskоv V.N. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 1831. https://doi.org/10.1134/S0036022442209014X]
- Trubelja M.F., Stubican V.S. // J. Am. Ceram. Soc. 1988. V. 71. P. 662. https://doi.org/10.1111/j.1151-2916.1988.tb06385.x
- Duran P., Pascual C. // J. Mater. Sci. 1984. V. 19. P. 1178. https://doi.org/10.1007/bf01120027
- Cao X.Q., Vassen R., Stoever D. // J. Europ. Ceram. Soc. 2004. V. 24. P. 1. https://doi.org/10.1016/s0955-2219(03)00129-8
- Mehboob G., Liu M.-J., Xu T., Hussain S. et al. // Ceram. Int. 2019. V. 46. P. 8497. https: //doi.org/ 10.1016/j.ceramint.2019.12.20
- Padture N.P. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
- Wu Z., Hong D., Zhong X., Niu Y., Zheng X. // Ceram. Int. 2023. V. 49. P. 21133. https://doi.org/10.1016/j.ceramint.2023.03.280.
- Poerschke D.L., Barth T.L., Levi C.G. // Acta Mater. 2016. V. 120. P. 302. https://doi.org/10.1016/j.actamat.2016.08.077
- Poerschke D.L., Jackson R.W., Levi C.G. // Ann. ReV. Mater. Res. 2017. V. 47. P. 297. https://doi.org/10.1146/annurev-matsci-010917-105000
- Summers W.D., Poerschke D.L., Begley M.R., et al. // J. Am. Ceram. Soc. 2020. V. 103. P. 5196. https://doi.org/10.1111/jace.17187
- Fabrichnaya O., Seifert H.J. // J. Phase Eq. Diffus. 2010. V. 32. P. 2. https://doi.org/10.1007/s 11669-010-9815-4
- Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/ 10.1016/j.ceramint.2021.06.125
- https://analyzing-testing.netzsch.com/ru/pribory-resheniya/differenczialnaya- skaniruyushhaya-kalorimetriya-dsk-differenczialnyj-termicheskij-analiz-dta/dsc- 404-f1-pegasus
- Гуськов А.В., Гагарин П.Г., Гуськов В.Н. // Докл. РАН. Химия. Науки о материалах. 2021. Т. 498. С. 83. https://doi.org/31857.S2686953521050083
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https: //doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/
- E.F. Westrum, Ir. // J. Therm. Anal. 1985. V. 30. P. 1209
- Gruber G.B., Chirico R.D., Westrum E.F., Jr. // J. Chem. Phys. 1982. V. 76. P. 4600.
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243.
- Konings R.J.M., Benes O., Kovacs A. et al. // J. Phys. Chem. Refer. Data. 2014. V. 43. P. 013101. https://doi.Org/10.1063/1.4825256
- Pankratz L.B. // U.S. Bureau of Mines Bulletin. 1982. V. 672. P. 509.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					