Experimental Investigation and Thermodynamic Modelling of Ag–In–Pd Ternary System
- Authors: Khoroshilov A.V.1, Kuznetsov V.N.2, Pavlenko A.S.2, Ptashkina E.A.2, Zhmurko G.P.3, Kabanova E.G.2, Kareva M.A.2
- 
							Affiliations: 
							- Institute of General and Inorganic Chemistry
- Chemical Faculty, Moscow State University
- Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 97, No 1 (2023)
- Pages: 46-54
- Section: CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
- Submitted: 27.02.2025
- Published: 01.01.2023
- URL: https://rjeid.com/0044-4537/article/view/668867
- DOI: https://doi.org/10.31857/S0044453723010235
- EDN: https://elibrary.ru/BCRZNU
- ID: 668867
Cite item
Abstract
Phase equilibria in Ag–In–Pd ternary system were studied using Scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX) and X-Ray diffraction method (XRD). The solubilities of the third components in Ag–In and In–Pd binary phases were established, as well as composition ranges (from 4 to 17.5 at % Ag at 25 at % In) and crystal structure of τ ternary compound (Al3Ti). New thermodynamic assessment of Ag–In–Pd ternary system was performed, basing on the published experimental data and those obtained in the present work. Good agreement was achieved between the calculation results and the experimental data on phase equilibria and thermodynamic properties of the phases. The results of the calculation reproduce well experimental DTA/DSC data of three samples (the data were not included into the optimization). This additionally supports the correctness of the obtained thermodynamic description.
About the authors
A. V. Khoroshilov
Institute of General and Inorganic Chemistry
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
V. N. Kuznetsov
Chemical Faculty, Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
A. S. Pavlenko
Chemical Faculty, Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
E. A. Ptashkina
Chemical Faculty, Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
G. P. Zhmurko
Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
E. G. Kabanova
Chemical Faculty, Moscow State University
														Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
M. A. Kareva
Chemical Faculty, Moscow State University
							Author for correspondence.
							Email: kabanovaeg@gmail.com
				                					                																			                												                								Moscow, Russia						
References
- Shin H.-J., Kwon Y.H., Seol H.-J. // J. Mech. Behav. Biomed. Mater. 2020. V. 107. P. 103728. https://doi.org/10.1016/j.jmbbm.2020.103728
- Zemanová A., Semenova O., Kroupa A. et al. // Monatsch. Chem. 2005. V. 136. № 11. P. 1931.https://doi.org/10.1007/s00706-005-0384-x
- Zemanová A., Semenova O., Kroupa A. et al. // Intermetallics. 2007. V.15. № 1. P. 77. https://doi.org/10.1016/j.intermet.2006.03.002
- Luef C., Flandorfer H., Ipser H. // Metall. Mater. Trans. A. 2005. V. 36. № 5. P. 1273. https://doi.org/10.1007/s11661-005-0219-8
- Garzeł G., Zabdyr L.A. // Rare Met. 2006. V. 25. № 5. P. 587. https://doi.org/10.1016/S1001-0521(06)60104-6
- STOE WinXPow, version 2.24. Darmstadt электронный ресурс. – Software package (10.2 Mb). Germany: STOE & Cie GmbH; 2009.
- Thermo-Calc®-Academic (Version 2022а) электронный ресурс. – Software package (235 Mb). – Stockholm: Thermo-Calc® Software AB.; 2022.
- Saunders N., Miodovnik A.P. CALPHAD (Calculation of Phase Diagrams): A comprehensive guide. London: Pergamon, 1998. 479 p.
- Kohlmann H., Ritter C. // Z. Anorg. Allg. Chem. 2009. V. 635. P. 1573. https://doi.org/10.1002/zaac.200900053
- Bhan S., Schubert K. // J. Less-Common Met. 1969. V. 17 P. 73. https://doi.org/10.1016/0022-5088(69)90038-1
- Ptashkina E.A., Kabanova E.G., Kalmykov K.B. et al. // J. of Alloys Comps. 2020. V. 845. P. 156166. https://doi.org/10.1016/j.jallcom.2020.156166
- Muzzillo C.P., Anderson T. // J. Mater. Sci. 2018. V. 53. № 9. P. 6893. https://doi.org/10.1007/s10853-018-1999-8
- Pavlenko A.S., Kabanova E.G., Kuznetsov V.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 13. P. 2691. https://doi.org/10.1134/s0036024420130178
- Jiang C., Liu Z.K. // Metall. Mater. Trans. A. 2002. V. 33. № 12. P. 3597. https://doi.org/10.1007/s11661-002-0235-x
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					


