The Molecular Mechanism of H2O2 Decomposition in a Reaction with an Au25(SCH3)12 Cluster
- Autores: Nikitenko N.G.1, Shestakov A.F.1,2
- 
							Afiliações: 
							- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Faculty of Fundamental Physical and Chemical Engineering, Moscow State University
 
- Edição: Volume 97, Nº 6 (2023)
- Páginas: 860-870
- Seção: PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.06.2023
- URL: https://rjeid.com/0044-4537/article/view/668724
- DOI: https://doi.org/10.31857/S0044453723060213
- EDN: https://elibrary.ru/KCPHXC
- ID: 668724
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The reactions of neutral and anionic Au25(SCH3)12 clusters with one H2O2 molecule (mechanism I) and with its dimer (H2O2)2 (mechanism II) have been studied within the framework of the density functional theory (DFT). It has been established that all processes proceed with low activation barriers and a large gain in energy during the formation of products, and also that mechanisms I and II are interconnected. Based on the calculated data, the structure of gold clusters with the most probable active centers for further interaction with methane, which contain one or two O atoms, is proposed. In this case, clusters containing the O2 fragment can form not only in the reaction of the initial cluster Au25(SCH3)12 with hydrogen peroxide, but also with molecular oxygen, since the O2 adsorption energy is low and the process is close to equilibrium.
Palavras-chave
Sobre autores
N. Nikitenko
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
														Email: ng_nikitenko@mail.ru
				                					                																			                												                								Chernogolovka, Moscow oblast, Russia						
A. Shestakov
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Faculty of Fundamental Physical and Chemical Engineering, Moscow State University
							Autor responsável pela correspondência
							Email: ng_nikitenko@mail.ru
				                					                																			                												                								Chernogolovka, Moscow oblast, Russia; Moscow, Russia						
Bibliografia
- Yaseen M., Humayun M., Khan A. et al. // Energies. 2021. V. 14. № 5. P. 1278. https://doi.org/10.3390/en14051278
- Ishida T., Murayama T., Taketoshi A. et al. // Chem. Rev. 2020. V. 120. № 2. P. 464. https://doi.org/10.1021/acs.chemrev.9b00551
- Li Z., Brouwer C., He C. // Ibid. 2008. V. 108. № 8. P. 3239. https://doi.org/10.1021/cr068434l
- Stratakis M., Garcia H. // Ibid. 2012. V. 112. № 8. P. 4469. https://doi.org/10.1021/cr3000785
- Sankar M., He Q., Engel R.V. et al. // Ibid. 2020. V. 120. № 8. P. 3890. https://doi.org/10.1021/acs.chemrev.9b00662
- Carabineiro S.A.C. // Front. Chem. 2019. V. 7:702. https://doi.org/10.3389/fchem.2019.00702
- Qi G., Davies T.E., Nasrallah A. et al. // Nature Catalysis. 2022. V. 5. № 1. P. 45. https://doi.org/10.1038/s41929-021-00725-8
- Golovanova S.A., Sadkov A.P., Shestakov A.F. // Kinetics and Catalysis. 2020. V. 61. № 5. P. 740. https://doi.org/10.1134/s0023158420040060
- Cai X., Saranya G., Shen K.Q. et al. // Angew. Chem.-Int. Edit. 2019. V. 58. № 29. P. 9964. https://doi.org/10.1002/anie.201903853
- Staykov A., Miwa T., Yoshizawa K. // J. of Catalysis. 2018. V. 364. P. 141. https://doi.org/10.1016/j.jcat.2018.05.017
- Mikami Y., Dhakshinamoorthy A., Alvaro M. et al. // Catal. Sci. Technol. 2013. V. 3. №1. P. 58. https://doi.org/10.1039/c2cy20068f
- Wani I.A., Jain S.K., Khan H. et al. // Curr. Pharm. Biotechnol. 2021. V. 22. № 6. P. 714. https://doi.org/10.2174/1389201022666210218195205
- Nasaruddin R.R., Chen T.K., Yan N. et al. // Coord. Chem. Rev. 2018. V. 368. P. 60. https://doi.org/10.1016/j.ccr.2018.04.016
- Liu L., Li H.Y., Tan Y. et al. // Catalysts. 2020. V. 10. № 1. P. 107. https://doi.org/10.3390/catal10010107
- Asao N., Hatakeyama N., Menggenbateer et al. // Chem. Comm. 2012. V. 48. № 38. P. 4540. https://doi.org/10.1039/c2cc17245c
- Zhu Y., Qian H.F., Drake B.A. et al. // Angew. Chem.-Int. Edit. 2010. V. 49. № 7. P. 1295. https://doi.org/10.1002/anie.200906249
- Tian S.B., Cao Y.T., Chen T.K. et al. // Chem. Comm. 2020. V. 56. № 8. P. 1163. https://doi.org/10.1039/c9cc08215h
- Yao Q.F., Wu Z.N., Liu Z.H. et al. // Chem. Sci. 2021. V. 12. № 1. P. 99. https://doi.org/10.1039/d0sc04620e
- Heaven M.W., Dass A., White P.S. et al. // J. Am. Chem. Soc. 2008. V. 130. № 12. P. 3754. https://doi.org/10.1021/ja800561b
- Zhu M., Aikens C.M., Hollander F.J. et al. // Ibid. 2008. V. 130. № 18. P. 5883. https://doi.org/10.1021/ja801173r
- Wu Z.W., Gayathri C., Gil R.R. et al. // Ibid. 2009. V. 131. № 18. P. 6535. https://doi.org/10.1021/ja900386s
- Juarez-Mosqueda R., Mpourmpakis G. // Phys. Chem. Chem. Phys. 2019. V. 21. № 40. P. 22272. https://doi.org/10.1039/c9cp03982a
- Zhu K.X., Liang S.X., Cui X.J. et al. // Nano Energy. 2021. V. 82. 105718 https://doi.org/10.1016/j.nanoen.2020.105718
- Kang X., Chong H.B., Zhu M.Z. // Nanoscale. 2018. V. 10. № 23. P. 10758. https://doi.org/10.1039/c8nr02973c
- Голованова С.А., Садков А.П., Шестаков А.Ф. // Изв. АН. Сер. Хим. 2022. № 4. С. 665.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- Stevens W.J., Bash H., Krauss M. // J. Chem. Phys. 1984. V. 81. № 12. P. 6026.
- Stevens W.J., Krauss M., Bash H. et al. // Can. J. Chem. 1992. V. 70. P. 612.
- Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. Хим. 2005. № 3. С. 804. https://doi.org/10.1007/s11172-005-0329-x
- Nikitenko N.G., Shestakov A.F. // Kinetics and Catalysis. 2014. V. 55. № 4. P. 401. https://doi.org/10.1134/s0023158414030100
- Nikitina N.A., Pichugina D.A., Kuz’menko N.E. // Kinet. Catal. 2019. V. 60. № 5. P. 606. https://doi.org/10.1134/s0023158419050033
- Pichugina D.A., Nikitina N.A., Kuz’menko N.E. // J. Phys. Chem. C. 2020. V. 124. № 5. P. 3080. https://doi.org/10.1021/acs.jpcc.9b10286
- Barone V., Cossi M., Tomasi J. // J. Chem. Phys. 1997. V. 107. № 8. P. 3210. https://doi.org/10.1063/1.474671
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision A.7. Pittsburgh: Gaussian Inc., 2003.
- Wu Z.K., Jin R.C. // ACS Nano. 2009. V. 3. № 7. P. 2036. https://doi.org/10.1021/nn9004999
- Wang W.L., Ji C.L., Liu K. et al. // Chem. Soc. Rev. 2021. V. 50. № 3. P. 1874. https://doi.org/10.1039/d0cs00254b
- Никитенко Н.Г., Шестаков А.Ф. // Кинетика и катализ. 2013. Т. 54. № 2. С. 177. https://doi.org/10.1134/S0023158413020110
- Никитенко Н.Г., Шестаков А.Ф. // ДАН. 2013. Т. 450. № 2. С. 181. https://doi.org/10.1134/s0012500813050066
- Liu K., Chen T., He S.Y. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 42. P. 12952. https://doi.org/10.1002/anie.201706647
- Liu K., He S.Y., L. Li et al. // Scientific Reports. 2021. V. 11. № 1. https://doi.org/10.1038/s41598-021-89235-y
- Шамб У., Сеттерфилд Ч., Вентворс Р. Перекись водорода. Москва: Изд-во иностр. лит. 1958. 578 с.
- Kelly C.P., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2007. V. 111. № 2. P. 408. https://doi.org/10.1021/jp065403l
- Sivadinarayana C., Choudhary T.V., Daemen L.L. et al. // J. Am. Chem. Soc. 2004. V. 126. № 1. P. 38. https://doi.org/10.1021/ja0381398
- Agarwal N., Thomas L., Nasrallah A. et al. // Catalysis Today. 2021. V. 381. P. 76. https://doi.org/10.1016/j.cattod.2020.09.001
- Yao Z.H., Zhao J.Y., Bunting R.J. et al. // Acs Catalysis. 2021. V. 11. № 3. P. 1202. https://doi.org/10.1021/acscatal.0c04125
- Tang Y.Q., Zhang Z.H., Lu M.K. et al. // Ind. Eng. Chem. Res. 2019. V. 58. № 33. P. 15119. https://doi.org/10.1021/acs.iecr.9b01459
- Beletskaya A.V., Pichugina D.A., Shestakov A.F. et al. // J. Phys. Chem. A. 2013. V. 117. № 31. P. 6817. https://doi.org/10.1021/acs.iecr.9b01459
- Wells D.H., Delgass W.N., Thomson K.T. // J. Catal. 2004. V. 225. № 1. P. 69. https://doi.org/10.1016/j.jcat.2004.03.028
- Barrio L., Liu P., Rodriguez J.A. et al. // J. Phys. Chem. C. 2007. V. 111. № 51. P. 19001. https://doi.org/10.1021/jp073552d
- Ford D.C., Nilekar A.U., Xu Y. et al. // Surface Science. 2010. V. 604. № 19–20. P. 1565. https://doi.org/10.1016/j.susc.2010.05.026
- Joshi A.M., Delgass W.N., Thomson K.T. // J. Phys. Chem. B. 2005. V. 109. № 47. P. 22392. https://doi.org/10.1021/jp052653d
- Ji J., Lu Z., Lei Y., Turner C.H. // Catalysts. 2018. V. 8. № 10. P. 421. https://doi.org/10.3390/catal8100421
- Coperet C. // Chem. Rev. 2010. V. 110. № 2. P. 656. https://doi.org/10.1021/cr900122p
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



