Evolution of the Impurity Sites and Electronic Spectra of Aluminum Phthalocyanine in a Silicate Nanoreactor
- Authors: Arabei S.M.1, Stanishevsky I.V.1, Pavich T.A.2, Slonskaya S.V.1
- 
							Affiliations: 
							- Belarusian State Agrarian Technical University
- Stepanov Institute of Physics, National Academy of Sciences of Belarus
 
- Issue: Vol 97, No 6 (2023)
- Pages: 843-849
- Section: PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
- Submitted: 27.02.2025
- Published: 01.06.2023
- URL: https://rjeid.com/0044-4537/article/view/668722
- DOI: https://doi.org/10.31857/S004445372306002X
- EDN: https://elibrary.ru/JHHYBD
- ID: 668722
Cite item
Abstract
The evolution of the electronic absorption spectra of substituted aluminum phthalocyanine incorporated into a nanoporous silicate gel matrix has been studied. The decomposition of the contour of the long-wavelength Q-absorption band of molecules into Voigt components reveals the dependence of the formation of various types of impurity sites in the matrix nanopores, which act as a solid-state nanoreactor, on the drying time of the matrix. Possible mechanisms of the effect of the internal structure of the synthesized silicate material during the transition from a sol state to a dried xerogel state on the spectral properties of phthalocyanine impurity molecules are discussed. Models of the interaction of the impurity molecules with the surface of the matrix nanopores during drying are considered; the features of the evolution of the resulting impurity sites are elucidated.
About the authors
S. M. Arabei
Belarusian State Agrarian Technical University
														Email: serguei.arabei@gmail.com
				                					                																			                												                								220023, Minsk, Belarus						
I. V, Stanishevsky
Belarusian State Agrarian Technical University
														Email: serguei.arabei@gmail.com
				                					                																			                												                								220023, Minsk, Belarus						
T. A. Pavich
Stepanov Institute of Physics, National Academy of Sciences of Belarus
														Email: serguei.arabei@gmail.com
				                					                																			                												                								220072, Minsk, Belarus						
S. V. Slonskaya
Belarusian State Agrarian Technical University
							Author for correspondence.
							Email: serguei.arabei@gmail.com
				                					                																			                												                								220023, Minsk, Belarus						
References
- Hench L.L., West J.K. // Chem. Rev. 1990. V. 90. № 1. P. 33. https://doi.org/10.1021/cr00099a003
- Арабей С.М., Павич Т.А., Станишевский И.В., Crepin C. // Журн. прикл. спектроскопии. 2022. Т. 89. № 2. С. 145. https://doi.org/10.47612/0514-7506-2022-89-2-145-152
- Komori T., Amao Y. // J. Porph. Phthal. 2003. V. 7. № 2. P. 131. https://doi.org/10.1142/S1088424603000185
- Anctil A., Landi B.J., Raffaelle R.P. // 34th IEEE Photovoltaic Specialists Conference: (PVSC 2009); Philadelphia, Pennsylvania, USA, 7–12 June 2009 / 2009. P. 1344.
- Frackowiak D., Wiktorowicz K., Planner A. et al. // Intern. J. Photoenergy. 2002. V. 4. № 2. P. 51. https://doi.org/10.1155/S1110662X02000090
- Frackowiak D., Ion R.-M., Waszkowiak A. // J. Phys. Chem. B. 2002. V. 106. № 51. P. 13154. https://doi.org/10.1021/jp0212592
- Павич Т.А., Арабей С.М., Соловьев К.Н. // Журн. прикл. спектроскопии. 2018. Т. 85. № 1. С. 5.
- Павич Т.А., Станишевский И.В., Кожич Д.Т. и др. // Там же. 2020. Т. 87. № 4. С. 611
- Matlab. [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Matlab.
- Scilab. [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Scilab.
- Abrarov S.M., Quine B.M. // Appl. Mathem. Comput. 2011. V. 218. № 5. P. 1894. https://doi.org/10.1016/j.amc.2011.06.072
- Abrarov S.M., Quine B.M. // arXiv:1205.1768v1 [math.NA]. 2012. https://doi.org/10.48550/arXiv.1205.1768.
- Gao F., Han L. // Comput. Optim. Appl. 2012. V. 51. № 1. P. 259.https://doi.org/10.1007/s10589-010-9329-3
- Waszkowiak A., Frackowiak D., Wiktorowicz K., Miyake J. // Acta Biochim. Pol. 2002. V. 49. № 3. P. 633. https://doi.org/10.18388/abp.2002_3772
- Lapkina L.A., Konstantinov N.Yu., Larchenko V.E. et al. // J. Porphyrins Phthalocyanines. 2009. V. 13. P. 859. https://doi.org/10.1142/S108842460900005X
- Лапкина Л.А., Киракосян Г.А., Ларченко В.Е. и др.// Журн. неорган. химии. 2020. Т. 65. № 2. С. 179.
- Lever A.B.P. // Adv. Inorg. Chem. Radiochem. 1965. V. 7. P. 27. https://doi.org/10.1016/S0065-2792(08)60314-3
- Eastwood D., Edwards L., Gouterman M., Steinfeld J. / J. Mol. Spectrosc. 1966. V. 20. № 4. P. 381. https://doi.org/10.1016/0022-2852(66)90009-9
- Fitch P.S.H., Haynam C.A., Levy D.H. // J. Chem. Phys. 1980. V. 73. № 3. P. 1064. https://doi.org/10.1063/1.440278
- Киселев В.Ф. Поверхностные явления в полупроводниках и диэлектриках. М.: Наука, 1970. 399 с.
- Киселев В.Ф. / Докл. АН СССР. 1967. Т. 176. № 1. С. 124.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					


