On the Stability of Axisymmetric States in the Ginzburg–Landau Theory
- Authors: Podolyak E.R1
- 
							Affiliations: 
							- P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences
 
- Issue: Vol 163, No 2 (2023)
- Pages: 189-200
- Section: Articles
- URL: https://rjeid.com/0044-4510/article/view/653563
- DOI: https://doi.org/10.31857/S0044451023020062
- EDN: https://elibrary.ru/OQICSG
- ID: 653563
Cite item
Abstract
The stability of superconducting states with a trapped magnetic flux in a spherical sample is investigated. Superconductors with a finite value of the Ginzburg–Landau parameter are considered (in particular, type I superconductors for which the magnetic field distortion near the sample plays an important role). It is assumed that the sample size is not too large as compared to correlation length ξ(T), and the superconducting state is axially symmetric. The possibility of the existence of states with a trapped flux in zero external field is considered. The results are compared to those for a cylindrical sample.
About the authors
E. R Podolyak
P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences
							Author for correspondence.
							Email: eee@kapitza.ras.ru
				                					                																			                												                								119334, Moscow, Russia						
References
- B.J. Baelus, D. Sun, and F.M. Peeters, Phys.Rev. B 75, 174523 (2007).
- И. Н. Хлюстиков, ЖЭТФ 149, 378 (2016)
- И. Н. Хлюстиков, ЖЭТФ 159 (2021).
- Е. М. Лифшиц, Л. П. Питаевский, Статистическая физика, ч.2, Москва, ФМЛ (2000).
- Е. Р. Подоляк, ЖЭТФ 153, (2018).
- http://pdesolutions.com
- В. Л. Гинзбург, ЖЭТФ 34, 113 (1958).
- Е. А. Андрюшин, В. Л. Гинзбург, А. П. Силин УФН 163, 113 (1993).
- П. де Жен, Сверхпроводимость металлов и сплавов, Мир, Москва (1968).
- Е. Р. Подоляк, ЖЭТФ 140, 1185 (2011).
- Е. Р. Подоляк, ЖЭТФ 156(1), 118 (2019).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					