Gas chromatographic analysis of the content of the organochlorine pesticide lindane in some samples of agricultural products under primary and secondary cultivation in the same soil
- Authors: Musabirov D.E.1,2, Daukaev R.A.1, Karimov D.O.1, Usmanova E.N.1, Zelenkovskaya E.E.1, Guskov V.Y.2
-
Affiliations:
- Ufa Research Institute of Labor Medicine and Human Ecology
- Ufa University of Science and Technology
- Issue: Vol 80, No 7 (2025)
- Pages: 688-698
- Section: ORIGINAL ARTICLES
- Submitted: 19.07.2025
- Accepted: 19.07.2025
- URL: https://rjeid.com/0044-4502/article/view/687893
- DOI: https://doi.org/10.31857/S0044450225070048
- EDN: https://elibrary.ru/bhozls
- ID: 687893
Cite item
Abstract
Residual content of the organochlorine pesticide lindane in model samples of tomatoes, cucumbers and onions was investigated by gas chromatography. A solution of the pesticide was added to the soil, after which the data were grown twice in contaminated soil. Two methods of sample preparation were used in the analysis: according to GOST 30349 and similar sample preparation using liquid nitrogen at the stage of homogenization. It was found that the use of liquid nitrogen in sample preparation increases the degree of analyte extraction up to two times. For tomato and cucumber samples, it was found that for both primary and secondary cultivation, the residual amount of organochlorine pesticide increased with increasing concentration of pesticide at spraying. However, this is not characteristic of onion samples. In the latter case, lindane residues decrease with increasing concentration of the parent analyte. This behavior is characteristic of root crop samples, to which onions are not related. The residual content of lindane in different parts of tomato and cucumber plants differs: tomato accumulates the pesticide to a greater extent in the fruit and cucumber in the haulm. In secondary cultivation in contaminated soil, the residual amount of lindane did not exceed 12 % of the original amount. As a result, it was found that the most suitable plant for growing on lindane-contaminated soils is cucumber, as 80-90 % of lindane is accumulated in inedible roots of cucumber, and the fruit contains the least amount of the contaminant among all vegetables. Tomato is unsuitable for cultivation on contaminated soils, as the fruit accumulates a significant amount of lindane.
Full Text

About the authors
D. E. Musabirov
Ufa Research Institute of Labor Medicine and Human Ecology; Ufa University of Science and Technology
Author for correspondence.
Email: 30102000@rambler.ru
Russian Federation, Ufa, Republic of Bashkortostan; Ufa, Republic of Bashkortostan
R. A. Daukaev
Ufa Research Institute of Labor Medicine and Human Ecology
Email: 30102000@rambler.ru
Russian Federation, Ufa, Republic of Bashkortostan
D. O. Karimov
Ufa Research Institute of Labor Medicine and Human Ecology
Email: 30102000@rambler.ru
Russian Federation, Ufa, Republic of Bashkortostan
E. N. Usmanova
Ufa Research Institute of Labor Medicine and Human Ecology
Email: 30102000@rambler.ru
Russian Federation, Ufa, Republic of Bashkortostan
E. E. Zelenkovskaya
Ufa Research Institute of Labor Medicine and Human Ecology
Email: 30102000@rambler.ru
Russian Federation, Ufa, Republic of Bashkortostan
V. Yu. Guskov
Ufa University of Science and Technology
Email: 30102000@rambler.ru
Russian Federation, Ufa, Republic of Bashkortostan
References
- Медведь Л.И. Справочник по пестицидам (гигиена применения и токсикология). Киев: Урожай, 1974. С. 448.
- Van Dyk J.C., Bouwman H., Barnhoorn I.E. J., Bornman M.S. DDT contamination from indoor residual spraying for malaria control // Sci. Total Environ. 2010. V. 408. № 13. P. 2745. https://doi.org/10.1016/j.scitotenv.2010.03.002
- Mrema E.J., Rubino F.M., Brambilla G., Moretto A., Tsatsakis A.M., Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity // Toxicology. 2013. V. 307. P. 74. https://doi.org/10.1016/j.tox.2012.11.015
- Singh Z., Kaur J., Kaur R., Hundal S.S. Toxic effects of organochlorine pesticides: A review // Am. J. BioSci. 2016. V. 12. № 3. P. 11. https://doi.org/10.11648/j.ajbio.s.2016040301.13
- Chopra A.K., Sharma M.K., Chamoli S. Bioaccumulation of organochlorine pesticides in aquatic system – An overview // Environ. Monit. Assess. 2011. V. 173. P. 905. https://doi.org/10.1007/s10661-010-1433-4
- Shen L., Wania F. Compilation, evaluation, and selection of physical – Chemical property data for organochlorine pesticides // J. Chem. Eng. Data. 2005. V. 50. № 3. P. 742. https://doi.org/10.1021/je049693f
- Jayaraj R., Megha P., Sreedev P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment // Interdiscip. Toxicol. 2016. V. 9. № 3-4. P. 90. https://doi.org/10.1515/intox-2016-0012
- Mendez M.A., Arab L. Organochlorine compounds and breast cancer risk // Pure Appl. Chem. 2003. V. 75. № 11. P. 1973. https://doi.org/10.1351/pac200375111973
- Mit N., Cherednichenko O., Mussayeva A., Khamdiyeva O., Amirgalieva A., Begmanova M. Ecological risk assessment and long-term environmental pollution caused by obsolete undisposed organochlorine pesticides // J. Environ. Sci. Health B. 2021. V. 56. № 5. P. 490. https://doi.org/10.1080/03601234.2021.1913931
- Zhang Y., Qi S., Xing X., Yang X., Devi N.L., Qu C., Liu H. -X., Zhang J., Zeng F. -M. Legacies of organochlorine pesticides (OCPs) in soil of China – a review, and cases in Southwest and Southeast China // Environ. Geochem. 2024. P. 519. https://doi.org/10.1016/B978-0-443-13801-0.00015-3
- Essington M.E., Ludwig A.L., Essington E.A., Walker F.R. Persistence of organochlorine pesticide residues in sediments derived from an agricultural watershed in Tennessee, USA // J. Soils Sediments. 2022. V. 22. № 6. P. 1852. https://doi.org/10.1007/s11368-022-03220-0
- Chandra R., Sharpanabharathi N., Prusty B.A. K., Azeez P.A., Kurakalva R.M. Organochlorine pesticide residues in plants and their possible ecotoxicological and agri food impacts // Sci. Rep. 2021. V. 11. № 1. P. 17841. https://doi.org/10.1038/s41598-021-97286-4
- Chowdhury N.J., Akbor M.A., Nahar A., Shaikh M.A. A. Techniques for quantification of organochlorine pesticides from a validated method by using gas chromatography-electron capture detector // Heliyon. 2024. V. 10. № 14. Article e34548. https://doi.org/10.1016/j.heliyon.2024.e34548
- Geng D., Jogsten I.E., Dunstan J., Hagberg J., Wang T., Ruzzin J., Rabasa-Lhoret R., van Bavel B. Gas chromatography/atmospheric pressure chemical ionization/mass spectrometry for the analysis of organochlorine pesticides and polychlorinated biphenyls in human serum // J. Chromatogr. A. 2016. V. 1453. P. 88. https://doi.org/10.1016/j.chroma.2016.05.030
- Akan J.C., Sodipo O.A., Mohammed Z., Abdulrahman F.I. Determination of organochlorine, organophosphorus and pyrethroid pesticide residues in water and sediment samples by high performance liquid chromatography (HPLC) with UV/visible detector // J. Anal. Bioanal. Tech. 2014. V. 5. № 6. P. 1. https://doi.org/10.4172/2155-9872.1000226
- Lisa M., Chouhan R.S., Vinayaka A.C., Manonmani H.K., Thakur M.S. Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: An organochlorine pesticide // Biosens. Bioelectron. 2009. V. 25. № 1. P. 224. https://doi.org/10.1016/j.bios.2009.05.006
- Bempah C.K., Donkor A., Yeboah P.O., Dubey B., Osei-Fosu P. A preliminary assessment of consumer’s exposure to organochlorine pesticides in fruits and vegetables and the potential health risk in Accra Metropolis, Ghana // Food Chem. 2011. V. 128. № 4. P. 1058. https://doi.org/10.1016/j.foodchem.2011.04.013
- Hao H., Sun B., Zhao Z. Effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides in soils // Environ. Pollut 2008. V. 156. № 3. P. 1046. https://doi.org/10.1016/j.envpol.2008.04.021
- Gonzalez M., Miglioranza K.S.B., de Moreno J.E.A., Moreno V.J. Evaluation of conventionally and organically produced vegetables for high lipophilic organochlorine pesticide (OCP) residues // Food Chem. Toxicol. 2005. V. 43. № 2. P. 261. https://doi.org/10.1016/j.fct.2004.10.002
- Zohair A., Salim A.B., Soyibo A.A., Beck A.J. Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables // Chemosphere. 2006. V. 63. № 4. P. 541. https://doi.org/10.1016/j.chemosphere.2005.09.012
- Мусабиров Д.Э., Даукаев Р.А., Каримов Д.О., Гуськов В.Ю. Газохроматографический анализ распределения γ-гексахлорциклогексана в сельскохозяйственных культурах // Журн. аналит. химии. 2024. Т. 79. № 8. С. 863. https://doi.org/10.31857/S0044450224080065. (Musabirov D.E., Daukaev R.A., Karimov D.O., Guskov V.Y. Gas chromatographic analysis of the distribution γ-hexachlorocyclohexane in agricultural crops // J. Anal. Chem. 2024. V. 79. № 8. P. 1058. https://doi.org/10.1134/S1061934824700448)
- ГОСТ 31858-2012. Вода питьевая. Метод определения содержания хлорорганических пестицидов газожидкостной хроматографией. М.: Стандартинформ, 2014. С. 11.
- ГОСТ Р 58144-2018. Вода дистиллированная. Технические условия. М.: РСТ, 2022. С. 9.
Supplementary files
