The Method for calculating the initial data for determining the waterproofness of translucent structures based on meteorological observations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The regulatory limit of water permeability of translucent enclosing structures in Russia and the methods of laboratory tests of water permeability are not tied to the construction conditions (climatic parameters of the construction region, building height, etc.). In this paper, we propose a method for calculating the initial data for assessing the waterproofness of translucent structures, taking into account the construction conditions (climatic region of construction, height of installation of the structure). This method is based on the application of standard data from long-term meteorological observations on the intensity of horizontal precipitation and wind speed during rain. This calculation method is proposed to be used in substantiating the design requirements for the waterproofness of translucent structures, as well as during laboratory tests. The use of this method is possible only if there is long-term meteorological observation data on the intensity of horizontal precipitation and wind speed during rain.

全文:

受限制的访问

作者简介

А. Traore

National Research Moscow State University of Civil Engineering

编辑信件的主要联系方式.
Email: sikart37@gmail.com

Postgraduate

俄罗斯联邦, 26, Yaroslavskoe Highway, Moscow, 129337

A. Konstantinov

National Research Moscow State University of Civil Engineering

Email: apkonst@yandex.ru

Candidate of Sciences (Engineering)

俄罗斯联邦, 26, Yaroslavskoe Highway, Moscow, 129337

I. Aksenov

National Research Moscow State University of Civil Engineering

Email: ivanak1995@mail.ru

Candidate of Sciences (Engineering)

俄罗斯联邦, 26, Yaroslavskoe Highway, Moscow, 129337

参考

  1. Bossche N.V.D. Watertightness of Building Components: Principles, Testing and Design Guidelines. Stedenbouw: Universiteit Gent. 2013. January. 297 р.
  2. Lacy R.E. Driving-rain maps and the onslaught of rain on buildings. RILEM/CIB Symp. On Moisture Problems in Buildings, Rain Penetration, Helsinki. 1965. August 16–19. Vol. 3, pp. 3–4.
  3. Straube J.F. and Burnett, E.F.P. Simplified prediction of driving rain deposition. Proc of International Building Physics Conference, Eindhoven. 2000, September 18–21, pp. 375–382.
  4. Best A.C. 1950. The size distribution of raindrops. Quarterly Journal of the Royal Meteorological Society. 1950. Vol. 76, pp. 16–36. http://dx.doi.org/10.1002/qj.49707632704
  5. Dingle A.N. and Lee Y. Terminal Fallspeeds of Raindrops. The Journal of Applied Meteorology and Climatology. 1972. August. Vol. 11, pp. 877–879.
  6. Богданова Э.Г. Методика расчета сумм осадков, проходящих через вертикальное сечение // Труды Главной геофизической обсерватории им. А.И. Воейкова. 1975. Вып. 341. С. 79–87. Bogdanova E.G. Methodology for calculating precipitation amounts passing through a vertical section. Trudy Glavnoy Geophysicheskoy Observatorii im. A.I. Voeikova. 1975. Iss. 341, pp. 79–87. (In Russian).
  7. Иванова Е.В. Специализированные характеристики интенсивности осадков для прикладных целей: Дис. … канд. геогр. наук. СПб., 2011. 112 с. Ivanova E.V. Specialized characteristics of precipitation intensity for applied purposes. Cand. Diss. (Geography). Saint Petersburg. 2011. 112 p. (In Russian).
  8. Linsley R.K., Kohler M.A., Paulhus J.L.H. Applied Hydrology. McGraw-Hill, New York, US. 1975.

补充文件

附件文件
动作
1. JATS XML
2. Initial meteorological data (fragment)

下载 (871KB)

版权所有 © Advertising publishing company "STROYMATERIALY", 2025