Using cell-automation approach to create digital twins of hierarchical porous structures
- Autores: Lebedev I.V.1, Gashenko V.I.1, Fedotova O.V.1, Abramov A.A.1, Tsygankov P.Y.1, Men’shutina N.V.1
- 
							Afiliações: 
							- Russian University of Chemical Technology named after D.I. Mendeleev
 
- Edição: Volume 59, Nº 2 (2025)
- Páginas: 47-57
- Seção: Articles
- ##submission.datePublished##: 04.09.2025
- URL: https://rjeid.com/0040-3571/article/view/689786
- DOI: https://doi.org/10.31857/S0040357125020049
- EDN: https://elibrary.ru/ndcdxf
- ID: 689786
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
This paper proposes a multiscale model based on a cellular-automation approach for generating digital doubles of porous hierarchical structures of sodium alginate-based aerogels. The proposed model utilizes a cell-automation approach to generate structures at meso- and macro-levels and then combine them into a single digital multiscale structure that contains both meso- and macro-pores. Samples of sodium alginate-based aerogels have been experimentally investigated. Computational experiments have been carried out to generate digital structures corresponding to the experimental samples obtained. Comparison of the structural characteristics of digital and experimental samples was carried out, on the basis of which conclusions were drawn about the correct operation of the model. The obtained digital multiscale structures can be used in the future to predict the properties of hierarchical structures, which will partially replace in situ experiments with computational ones and, therefore, reduce costs in the development of new materials with specified properties.
Texto integral
 
												
	                        Sobre autores
I. Lebedev
Russian University of Chemical Technology named after D.I. Mendeleev
														Email: chemcom@muctr.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Gashenko
Russian University of Chemical Technology named after D.I. Mendeleev
														Email: chemcom@muctr.ru
				                					                																			                												                	Rússia, 							Moscow						
O. Fedotova
Russian University of Chemical Technology named after D.I. Mendeleev
														Email: chemcom@muctr.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Abramov
Russian University of Chemical Technology named after D.I. Mendeleev
														Email: chemcom@muctr.ru
				                					                																			                												                	Rússia, 							Moscow						
P. Tsygankov
Russian University of Chemical Technology named after D.I. Mendeleev
														Email: chemcom@muctr.ru
				                					                																			                												                	Rússia, 							Moscow						
N. Men’shutina
Russian University of Chemical Technology named after D.I. Mendeleev
							Autor responsável pela correspondência
							Email: chemcom@muctr.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Меньшутина Н.В., Ловская Д.Д., Лебедев А.Е., Лебедев Е.А. Процессы получения частиц аэрогелей на основе альгината натрия с использованием сверхкритической сушки в аппаратах различного объема // Сверхкритические Флюиды: Теория и Практика. 2017. Т. 12. № 2. C. 35.
- Smirnova I., Gurikov P. Aerogel production: Current status, research directions, and future opportunities: 30th Year Anniversary Issue of the Journal of Supercritical Fluids // The Journal of Supercritical Fluids. 2018. Т. 134. C. 228.
- Stergar J., Maver U. Review of aerogel-based materials in biomedical applications // Journal of Sol-Gel Science and Technology. 2016. V. 77. № 3. P. 738.
- García-González C.A., Alnaief M., Smirnova I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems // Carbohydrate Polymers. 2011. Т. 86. № 4. C. 1425.
- García-González C.A., Sosnik A., Kalmár J., De Marco I., Erkey C., Concheiro A., Alvarez-Lorenzo C. Aerogels in drug delivery: From design to application // Journal of Controlled Release. 2021. Т. 332. C. 40.
- Menshutina N., Majouga A., Uvarova A., Lovskaya D., Tsygankov P., Mochalova M., Abramova O., Ushakova V., Morozova A., Silantyev A. Chitosan Aerogel Particles as Nasal Drug Delivery Systems // Gels. 2022. V. 8. № 12. P. 796.
- Smirnova I., Suttiruengwong S., Arlt W. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems: Aerogels 7. Proceedings of the 7th International Symposium on Aerogels // Journal of Non-Crystalline Solids. 2004. Т. 350. C. 54.
- Toward Predictive Multiscale Modeling of Vascular Tumor Growth | Archives of Computational Methods in Engineering. https://link.springer.com/article/10.1007/s11831-015-9156-x
- Menshutina N.V., Kolnoochenko A.V., Lebedev E.A. Cellular Automata in Chemistry and Chemical Engineering // Annual Review of Chemical and Biomolecular Engineering. 2020. Т. 11. № 1. C. 87.
- Лебедев И.В. и др. Цифровые двойники пористых структур аэрогелей с использованием клеточно-автоматного подхода и кривых Безье // Теоретические основы химической технологии. 2023. Т. 57. № 4. С. 412.
- Gerke K.M., Karsanina M.V., Mallants D. Universal stochastic multiscale image fusion: an example application for shale rock // Scientific reports. 2015. Т. 5. № 1. С. 15880.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 















