Evaluation of the interference protection efficiency of an adaptive antenna array under the action of two-point coherent interference

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The noise immunity of the adaptive antenna array (AAA) under the action of two-point incoherent and coherent noise interference (NI) was compared by the value of the interference reduction factor. On the example of navigation AAA it is shown that the attenuation levels of two-point coherent noise interference by the results of AAA adaptation are much lower than incoherent noise interference.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Yudin

Moscow Aviation Institute (National Research University)

Email: danil.svch@yandex.ru
Ресей, Volokolamskoye Highway, 4, Moscow, 125993

D. Savchenko

JS «Aeropribor-Voshod»

Хат алмасуға жауапты Автор.
Email: danil.svch@yandex.ru
Ресей, str. Tkatskaya, 19, Moscow, 105318

Әдебиет тізімі

  1. Van Trees H. Optimum Array Processing. N.Y.: Wiley-Intersci., 2002.
  2. Монзинго Р.А., Миллер Т.У. Адаптивные антенные решетки: Введение в теорию / Пер с англ. М.: Радио и связь, 1986.
  3. Глонасс. Принципы построения и функционирования. 3-е изд. М.: Радиотехника, 2005.
  4. Харисов В.Н., Ефименко В.С., Оганесян А.А. и др. // Радиотехника. 2013. № 7. С. 132.
  5. Вейцель А.В., Вейцель В.А., Татарников Д.В. Аппаратура высокоточного позиционирования по сигналам глобальных навигационных спутниковых систем: высокоточные антенны. Специальные методы повышения точности позиционирования / Под ред. М.И. Жодзишского. М.: МАИ-ПРИНТ, 2011.
  6. Марков Г.Т., Сазонов Д.М. Антенны: учебник для студентов радиотехнических специальностей вузов. 2-е изд. М.: Энергия, 1975.
  7. Юдин В.Н., Волков А.М. // Электросвязь. 2020. № 12. С. 50.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Amplitude-angular (a) and phase-angular (b) characteristics of a two-point radiator.

Жүктеу (174KB)
3. Fig. 2. Mutual arrangement and orientation of the base B of the two-point transmitter WP and the AAR elements: αB and αAAR are the angles that determine the orientation of the base of the two-point transmitter WP and the AAR web relative to the straight line passing through points P and O; r0 is the distance between points P and O; rn is the distance between points P and AEN, n = 1…4; d is the length of the side of the square AAR web.

Жүктеу (121KB)
4. Fig. 3. Dependence of the coefficient of linear velocity of the SR on the distance r0 for a base length of d = 350 m (a) and 1000 m (b) for the cases of DNSR (curve 1 – ISR1, curve 2 – ISR2) and DKSR (curve 3 – ISR1, curve 4 – ISR2).

Жүктеу (287KB)
5. Fig. 4. Sections of the AAR DN, formed based on the results of adaptation, by a horizontal plane for the cases of DNShP (a) and DKShP (b): the directions to IShP1 and IShP2 are equal to –9.4623 and 9.4623 degrees, respectively, r0 = 3 km, d = 1 km.

Жүктеу (161KB)
6. Fig. 5. Dependence of the Kosl ShP on the base length of a two-point emitter d at a distance of r0 = 50 km for the cases of DNShP (curve 1 – IShP1, curve 2 – IShP2) and DKShP (curve 3 – IShP1, curve 4 – IShP2).

Жүктеу (99KB)
7. Fig. 6. Dependence of Kosl ShP on the power of IShP with a base length of d = 1 km and a distance of r0 = 3 km for the cases of DNShP (curve 1 – IShP1, curve 2 – IShP2) and DKShP (curve 3 – IShP1, curve 4 – IShP2).

Жүктеу (143KB)
8. Fig. 7. Dependence of Kosl SHP on the angle αB of orientation of the base of a two-point emitter at a distance of r0 = 3 km and a base length of d = 100 (a) and 200 m (b) for the cases of DNSHP (curve 1 – ISHP1, curve 2 – ISHP2) and DKSHP (curve 3 – ISHP1, curve 4 – ISHP2).

Жүктеу (263KB)

© Russian Academy of Sciences, 2024