Dispersion characteristics of spin waves in a nanoscale magnon crystal
- Autores: Balayeva V.V.1, Romanenko D.V.1, Morozova M.A.1
- 
							Afiliações: 
							- Saratov State University named after N.G. Chernyshevsky
 
- Edição: Volume 70, Nº 4 (2025)
- Páginas: 405-411
- Seção: ON THE 70th ANNIVERSARY OF S.A. NIKITOV
- URL: https://rjeid.com/0033-8494/article/view/687514
- DOI: https://doi.org/10.31857/S0033849425040108
- EDN: https://elibrary.ru/FRSGVX
- ID: 687514
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The paper presents the results of a study of the features of spin wave propagation in a magnon crystal based on a nanoscale ferromagnetic film with a periodic system of grooves on the surface. Micromagnetic modeling was performed in the MuMax3 environment. It is established that additional hybrid modes on the dispersion characteristic for a magnon crystal near each main width mode are formed. The ratio of ridge to groove widths affects the energy distribution between hybrid modes and the cutoff frequency of the main modes. The influence of the ridge/groove ratio on the formation of band gaps based on dispersion and amplitude-frequency characteristics is analyzed. It is shown that the most pronounced band gaps are observed for large ridge/groove width ratios. Also, an increase in the ridge/groove ratio and an increase in the groove depth leads to an increase in the number of orders of pronounced Bragg resonances.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
V. Balayeva
Saratov State University named after N.G. Chernyshevsky
														Email: mamorozovama@yandex.ru
				                					                																			                												                	Rússia, 							Astrakhanskaya Str., 83, Saratov, 410012						
D. Romanenko
Saratov State University named after N.G. Chernyshevsky
														Email: mamorozovama@yandex.ru
				                					                																			                												                	Rússia, 							Astrakhanskaya Str., 83, Saratov, 410012						
M. Morozova
Saratov State University named after N.G. Chernyshevsky
							Autor responsável pela correspondência
							Email: mamorozovama@yandex.ru
				                					                																			                												                	Rússia, 							Astrakhanskaya Str., 83, Saratov, 410012						
Bibliografia
- Гуляев Ю.В., Никитов С.А. // ДАН. Сер. Физика. 2001. Т. 380. С. 469.
- Kruglyak V.V., Dvornik M., Mikhaylovskiy R.V. et al. Metamaterial. / Ed. by X.-Y. Jiang. L.: InTechOpen, 2012. P. 341.
- Chumak A.V., Serga A.A., Hillebrands B. // J. Phys.: Appl. Phys. 2017. V. 50. № 24. P. 244001.
- Frey P., Nikitin A.A., Bozhko D.A. et al. // Commun. Phys. 2020. V. 3. № 1. Article No. 17.
- Goto T., Shimada K., NakamuraY. et al. // Phys. Rev. Appl. 2019. V. 11. № 1. P. 014033.
- Chumak A.V., Kabos V.P., Wu M. et al. // IEEE Trans. 2022. V. MAG-58. № 6. Article No. 0800172.
- Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Cond. Matt. 2021. V. 33. № 41. P. 413001.
- Wang Q., Kewenig M., Schneider M. et al. // Nature Electronics. 2020. V. 3. № 12. V. 765.
- Sadovnikov A.V., Beginin E.N., Morozova M.A. et al. // Appl. Phys. Lett. 2016. V. 109. № 4. P. 042407.
- Wang Zh.K., Zhang V.L., Lim H.S. et al. // ACS Nano. 2010. V. 4. № 2. P. 643.
- Böttcher T., Ruhwedel M., Levchenko K.O. et al. // Appl. Phys. Lett. 2022. V. 120. № 10. P. 102401.
- Wang Q., Verba R., Heinz B. et al. // arxiv.org/pdf/2207.01121.
- Sheshukova S.E., Beginin E.N., Sadovnikov A.V. et al. // IEEE Magnetics Lett. 2014. V. 5. Article No. 3700204.
- Дроздовский А.В., Черкасский М.А., Устинов А.Б. и др. // Письма в ЖЭТФ. 2010. Т. 91. № 1. С. 17.
- Ustinov A.B., Kalinikos B.A., Demidov V.E., Demokritov S.O. // Phys. Rev. B.2010. V. 81. № 18. P. 180406.
- Morozova M.A., Lobanov N.D., Matveev O.V. et al. // J. Magn. Magn. Mater. 2023. V. 584. P. 171051.
- Collet M., Gladii O., Evelt M. et al. // Appl. Phys. Lett. 2017. V. 110. № 9. P. 092408.
- Evelt M., Demidov V.E., Bessonov V. // Appl. Phys. Lett. 2016. Т. 108. № 17. P. 172406.
- Morozova M.A., Matveev O.V., Romanenko D.V. et al. // Phys. Rev. B. 2024. V. 110. № 10. P. 104408.
- Morozova M.A., Matveev O.V., Markeev A.M. et al. // Phys. Rev. B. 2023. V. 108. № 17. P. 174407.
- Wang Q., Rippo P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. P. e1701517.
- Gruszecki P., Kasprzak M., Serebryannikov A.E. et al. // Scientific Reports. 2016. V. 6. Article No. 22367.
- Qin H., Hämäläinen S.J., Arjas K. et al. // Phys. Rev. B. 2018. V. 98. № 22. P. 224422.
- Goto T., Yoshimoto T., Iwamoto B. et al. // Scientific Reports. 2019. V. 9. Article No. 16472.
- Wang Q., Chumak A.V., Pirro P. // Nature Commun. 2021. V. 12. № 1. P. 2636.
- Wojewoda O., Holobrádek J., Pavelka D. et al. // Appl. Phys. Lett. 2024. V. 125. № 13. P. 132401.
- Sadovnikov A.V., Beginin E.N., Odincov S.A. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. P. 172411.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





