Implementation of the Maximum Bandwidth Ratio of Satellite Radio Communication Systems under the Conditions for Intramodal Dispersion of Transionospheric Radio Channels
- Authors: Ivanov D.V.1, Ivanov V.A.1, Ryabova N.V.1, Kislitsyn A.A.1
- 
							Affiliations: 
							- Volga State University of Technology
 
- Issue: Vol 68, No 6 (2023)
- Pages: 571-578
- Section: К 85-ЛЕТИЮ ДМИТРИЯ СЕРГЕЕВИЧА ЛУКИНА
- URL: https://rjeid.com/0033-8494/article/view/650510
- DOI: https://doi.org/10.31857/S0033849423060049
- EDN: https://elibrary.ru/XLUNDS
- ID: 650510
Cite item
Abstract
The problem of significant extension of the band of the transionospheric radio channel to the maximum possible values is solved to improve the efficiency of satellite communication systems. Hardware and software are created to suppress the group delay dispersion using methods of data mining for experimental diagnostics of a transionospheric communication line. Algorithms and tools for intelligent sensory diagnostics of wideband radio channels with adaptation to dispersion variability are developed. In the absence of adaptation, it is possible to create radio channels of undistorted transmission with a bandwidth ratio of no greater than 4.5%, while adaptation to dispersion variability makes it possible to increase the bandwidth ratio to 11.5%. The greatest bandwidth ratio (20–25%) for dispersion-free transmission can be achieved with the aid of adaptive inverse filtering of the channel frequency response in combination with such intelligent methods as equalization with error, machine learning of channel equalizer, and big data processing.
About the authors
D. V. Ivanov
Volga State University of Technology
														Email: KislitsinAA@volgatech.net
				                					                																			                												                								Yoshkar-Ola, 424000 Russia						
V. A. Ivanov
Volga State University of Technology
														Email: KislitsinAA@volgatech.net
				                					                																			                												                								Yoshkar-Ola, 424000 Russia						
N. V. Ryabova
Volga State University of Technology
														Email: KislitsinAA@volgatech.net
				                					                																			                												                								Yoshkar-Ola, 424000 Russia						
A. A. Kislitsyn
Volga State University of Technology
							Author for correspondence.
							Email: KislitsinAA@volgatech.net
				                					                																			                												                								Yoshkar-Ola, 424000 Russia						
References
- Иванов Д.В., Иванов В.А., Кислицын А.А., Рябова М.И. // Вестн. Поволж. гос. технол. ун-та. Сер. Радиотех. и инфокоммуникац. системы. 2021. № 3. С. 14. https://doi.org/10.25686/2306-2819.2021.3.14
- Furman W., Nieto J., Koski E. // The 10th Nordic Conf.on HF Communications. At Fårö, 2013. P. 4.
- Растягаев Д.В., Палкин Е.А., Лукин Д.С. и др. // Изв. вузов. Радиофизика. 2021. Т. 64. № 8–9. С. 590.
- Бова Ю.И., Крюковский А.С., Кутуза Б.Г., Лукин Д.С. // РЭ. 2019. Т. 64. № 8. С. 752.
- Бова Ю.И., Крюковский А.С., Лукин Д.С. // T-Comm: Телекоммуникации и транспорт. 2018. Т. 12. № 12. С. 22.
- Иванов Д.В., Иванов В.А., Рябова Н.В., Овчинников В.В. // Вестн. Поволжс. гос. технол. ун-та. Сер. Радиотех. и инфокоммуникац. системы. 2021. № 1. С. 6. https://doi.org/10.25686/2306-2819.2021.1.6
- Ivanov V.A., Ivanov D.V., Ryabova N.V. et al. // Radio Sci. V. 54. № 1. P. 34. https://doi.org/10.1029/2018RS006636
- Ovchinnikov V.V., Ivanov D.V. // Proc. 2020 XXXIII General Assembly and Sci. Symp. Int. Union of Radio Sci. 2020. P. 1. https://doi.org/10.23919/URSIGASS49373.2020.9232379
- Federal Communications Commission. Revision of part 15 of the commission’s rules regarding ultra wideband transmission systems. First report and order. FCC 02 48. –, Washington, DC, Feb., 2002. URL: https://www.fcc.gov/document/revisionpart-15-commissions-rules-regarding-ultra-wideband.
- Ivanov D.V., Ivanov V.A., Ryabova N.V., Ovchinnikov V.V. // Proc. 2022 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). Arkhangelsk. 29 Jun.–01 Jul. N.Y.: IEEE, 2022. Paper № 9840991. https://doi.org/10.1109/SYNCHROINFO55067.2022.9840991
- Иванов Д.В., Иванов В.А., Рябова Н.В., Овчинников В.В. // Радиотехника. 2022. Т. 86. № 11. С. 166. https://doi.org/10.18127/j00338486-202211-23
- Ivanov D.V., Ivanov V.A., Ryabova N.V. et al. // Proc. VI Int. Conf. Kaliningrad. 2018. V. 1. P. 81.
- Ясюкевич Ю.В., Мыльникова А.А., Демьянов В.В. и др. // Вестник Поволж. гос. технол. ун-та. Сер. Радиотех. и инфокоммун. системы, 2013. № 3. С. 18.
- Kislitsin A.A., Ryabova N.V., Konkin N.A. // Proc. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). Svetlogorsk. 01–03 Jul. N.Y.: IEEE, 2020. Paper № 9166091. https://doi.org/10.1109/SYNCHROINFO49631.2020.9166091
- Кислицын А.А. Вестн. Поволж. гос. технол. ун-та. Сер. Радиотех. и инфокоммуникац. системы. 2019. № 3. С. 6.
- Ivanov D.V., Ivanov V.A., Ryabova N.V. et al. // Proc. 12th European Conf. on Antennas and Propagation (EuCAP 2018). London. 09–13 Apr. N.Y.: IEEE, 2018. Article No. cp.2018.0473. https://doi.org/10.1049/cp.2018.0474
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



