On the stability of linear systems with a quadratic integral
- Autores: Kozlov V.V.1
- 
							Afiliações: 
							- Steklov Mathematical Institute RAS
 
- Edição: Volume 88, Nº 1 (2024)
- Páginas: 5-16
- Seção: Articles
- URL: https://rjeid.com/0032-8235/article/view/675071
- DOI: https://doi.org/10.31857/S0032823524010017
- EDN: https://elibrary.ru/YUZUZH
- ID: 675071
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The problem of stability of non-degenerate linear systems admitting a first integral in the form of a non-degenerate quadratic form is considered. New algebraic criteria for stability, as well as complete instability of such systems, have been established in the form of equality to zero of traces of products of matrices, which include an additional symmetric matrix. These conditions are closely related to the symplectic geometry of the phase space, which is determined by the matrix of the original linear system and the symmetric matrix defining the first integral. General results are applied to finding conditions for complete instability of linear gyroscopic systems.
Texto integral
 
												
	                        Sobre autores
V. Kozlov
Steklov Mathematical Institute RAS
							Autor responsável pela correspondência
							Email: vvkozlov@presidium.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Kozlov V.V. Linear systems with a quadratic integral // JAMM, 1992, vol. 56, iss. 6, pp. 803–809. doi: 10.1016/0021-8928(92)90114-N
- Kozlov V.V. Linear hamiltonian systems: quadratic integrals, singular subspaces and stability // R.&C. Dyn., 2018, Vol. 23, no 1, pp. 26–46.
- Kozlov V.V., Karapetyan A.A. On the stability degree // Differ. Eqns., 2005, vol. 41, no. 2, pp. 195–201.
- John F. A note on the maximum principle for elliptic differential equations // Bull. Amer. Math. Soc., 1938, vol. 44, pp. 268–271.
- Dines L.L. On linear combinations of quadratic forms // Bull. Amer. Math. Soc., 1943, vol. 49, pp. 388–393.
- Uhlig F. A Reccurring theorem about pairs of quadratic forms and extensions: a survey // Linear Algebra and Its Appl., 1979, vol. 25, pp. 219–237.
- Gantmakher F.R. Matrix Theory. Moscow: Fizmatlit, 2004. 560 p. (in Russian)
- Kirillov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: De Gruyter, 2013.
- Mailybaev A.A., Seyranyan A.P. Multiparameter Stability Problems. Theory and Applications in Mechanics. Moscow: Fizmatlit, 2009. 399 p. (in Russian)
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

