Development of biological microchips on an aluminum support with cells made of brush polymers

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method has been developed for manufacturing biological microchips on an aluminum substrate with hydrophilic cells from brush copolymers with the formation of a matrix of cells using photolithography. The surface of aluminum substrates was previously coated with a thin, durable, moderately hydrophobic layer of cross-linked polymer to prevent contact with the aluminum surface of the components used in the analysis of nucleic acids. Aluminum biochip substrates have high thermal conductivity and low heat capacity, which is important for the development of methods for multiplex PCR analysis on a chip. Oligonucleotide probes were covalently immobilized in the cells of the biochip. The preservation of the hybridization activity of the immobilized DNA probes was demonstrated in a hybridization analysis with a synthetic DNA target representing a section of the sequence of the 7th exon of the human ABO gene. The developed methods can be used in the development of a technology for parallel multiple rapid microanalysis of nucleic acids “lab on a chip” for the detection of human somatic and infectious diseases

Full Text

Restricted Access

About the authors

I. Yu. Shishkin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

G. F. Shtylev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

V. E. Barsky

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

S. A. Lapa

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

O. A. Zasedateleva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

V. E. Kuznetsova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

V. E. Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

V. A. Vasiliskov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

S. A. Polyakov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

A. S. Zasedatelev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: chud@eimb.ru
Russian Federation, Moscow, 119991

A. V. Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: chud@eimb.ru
Russian Federation, Moscow, 119991

References

  1. Yershov G., Barsky V., Belgovskiy A., Kirillov E., Kreindlin E., Ivanov I., Parinov S., Guschin D., Drobishev A., Dubiley S., Mirzabekov A. (1996) DNA analysis and diagnostics on oligonucleotide microchips. Proc. Natl. Acad. Sci. USA. 93, 4913–4918. doi: 10.1073/pnas.93.10.4913
  2. Beaudet A.L., Belmont J.W. (2008) Array-based DNA diagnostics: let the revolution begin. Annu. Rev. Med. 59, 113–129. doi: 10.1146/annurev.med.59.012907.101800
  3. Gryadunov D., Dementieva E., Mikhailovich V., Nasedkina T., Rubina A., Savvateeva E., Fesenko E., Chudinov A., Zimenkov D., Kolchinsky A., Zasedatelev A. (2011) Gel-based microarrays in clinical diagnostics in Russia. Exp. Rev. Mol. Diagn. 11, 839–853. https://doi.org/10.1586/ERM.11.73
  4. Strizhkov B.N., Drobyshev A.L., Mikhailovich V.M., Mirzabekov A.D. (2000) PCR amplification on a microarray of gel-immobilized oligonucleotides: detection of bacterial toxin- and drug-resistant genes and their mutations. BioTechniques. 29, 844–857. doi: 10.2144/00294rr01
  5. Tillib S.V., Strizhkov B.N., Mirzabekov A.D. (2001) Integration of multiple PCR amplifications and DNA mutation analyses by using oligonucleotide microchip. Analyt. Biochemistry. 292, 155–160. doi: 10.1006/abio.2001.5082l
  6. Pemov A., Modi H., Chandler D.P., Bavykin S. (2005) DNA analysis with multiplex microarray-enhanced PCR. Nucl. Acids Res. 33, e11. doi: 10.1093/nar/gnh184
  7. Khodakov D.A., Zakharova N.V., Gryadunov D.A., Filatov F.P., Zasedatelev A.S., Mikhailovich V.M. (2008) An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. BioTechniques. 44, 241–248. doi: 10.2144/000112628
  8. Chudinov A.V., Kolganova N.A., Egorov A.E., Fesenko D.O., Kuznetsova V.E., Nasedkina T.V., Vasiliskov V.A., Zasedatelev A.S., Timofeev E.N. (2015) Bridge DNA amplification of cancer-associated genes on cross-linked agarose microbeads. Microchim. Acta. 182, 557–463. doi: 10.1007/s00604–014–1357–8.
  9. Лапа С.А., Клочихина Е.С., Мифтахов Р.А., Заседателев А.С., Чудинов А.В. (2021) Мультиплексная ПЦР на чипе с прямой детекцией удлинения иммобилизованного праймера. Биоорган. химия. 47, 652–656. https://doi.org/10.31857/S0132342321050298
  10. Лапа C.А., Мифтахов Р.А., Клочихина Е.С., Аммур Ю.И., Благодатских С.А., Шершов В.Е., Заседателев А.С., Чудинов А.В. (2021) Разработка мультиплексной ОТ-ПЦР с иммобилизованными праймерами для идентификации возбудителей инфекционной пневмонии человека. Молекуляр. биология. 55, 944–955. doi: 10.1134/S0026893321040063)
  11. Lysov Y., Barsky V., Urasov D., Urasov R., Cherepanov A., Mamaev D., Yegorov Y., Chudinov A., Surzhikov S., Rubina A., Smoldovskaya O., Zasedatelev A. (2017) Microarray analyzer based on wide field fluorescent microscopy with laser illumination and a device for speckle suppression. Biomed. Optics Express. 8, 4798–4810. https://doi.org/10.1364/BOE.8.004798
  12. Spitsyn M.A., Kuznetsova V.E., Shershov V.E., Emelyanova M.A., Guseinov T.O., Lapa S.A., Nasedkina T.V., Zasedatelev A.S., Chudinov A.V. (2017) Synthetic route to novel zwitterionic pentamethine indocyanine fluorophores with various substitutions. Dyes Pigments. 147, 199–210. http://dx.doi.org/10.1016/j.dyepig.2017.07.052
  13. Barsky V., Perov A., Tokalov S., Chudinov A., Kreindlin E., Sharonov A., Kotova E., Mirzabekov A. (2002) Fluorescence data analysis on gel-based biochips. J. Biomol. Screening. 7, 247–257. https://doi.org/10.1177/108705710200700308
  14. Мифтахов Р.А., Иконникова А.Ю., Василисков В.А., Лапа С.А., Левашова А.И., Кузнецова В.Е., Шершов В.Е., Заседателев А.С., Наседкина Т.В., Чудинов А.В. (2023) Биочип с ячейками из щеточных полимеров с реактивными карбоксильными группами для анализа ДНК. Биоорган. химия. 49, 641–648. DOI: S0132342323050044
  15. Lee J.G., Cheong K.H., Huh N., Kim S., Choi J.W., Ko C. (2006) Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab. Chip. 6, 886–895. https://doi.org/10.1039/B515876A
  16. Sin E.J., Moon Y.S., Lee Y.K., Lim J.O., Huh J.S., Choi S.Y., Sohn Y.S. (2012) Surface modification of aluminum oxide for biosensing application. Biomed. Engin: Applications, Basis, Commun. 24, 111–116. doi: 10.1142/S1016237212500093
  17. Chai C., Lee J., Takhistove P. (2010) Direct detection of the biological toxin in acidic environment by electrochemical impedimetric immunosensor. Sensors. 10, 11414–11427. https://doi.org/10.3390/s101211414
  18. Spitsyn M.A., Kuznetsova V.E., Shershov V.E., Emelyanova M.A., Guseinov T.O., Lapa S.A., Nasedkina T.V., Zasedatelev A.S., Chudinov A.V. (2017) Synthetic route to novel zwitterionic pentamethine indocyanine fluorophores with various substitutions. Dyes Pigments. 147, 199–210. http://dx.doi.org/10.1016/j.dyepig.2017.07.052
  19. Schubert J., Chanana M. (2019) Coating matters: review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Curr. Med. Chem. 25(35), 4556–4586. doi: 10.2174/0929867325666180601101859
  20. Sim Y.J., Seo E.K. Choi G.J., Yoon S.J., Jang J. (2009) UV-induced crosslinking of poly(vinil acetate) films containing benzophenone. J. Korean Soc. Dyers Finishers. 21(4), 33–38. doi: 10.5764/TCF.2009.21.4.033
  21. Qu B.J., Xu Y.H., Ding L.H., Ranby B. (2000) A new mechanism of benzophenone photoreduction in photoinitiated crosslinking of polyethylene and its model compounds. J. Polym. Sci. A: Polym. Chem. 38(6), 999–1005. https://doi.org/10.1002/(SICI)1099–0518(20000315)38:6<999:: AID-POLA9>3.0.CO;2–1
  22. Ogiwara Y., Kanda M., Takumi M., Kubota H. (1981) Photosensitized grafting on polyolefin films in vapor and liquid phases. J. Polym. Sci. Polym. Lett. Ed. 19, 457. https://doi.org/10.1002/pol.1981.130190905
  23. Мифтаxов Р.А., Лапа С.А., Шеpшов В.Е., Заcедателева О.А., Гуcейнов Т.О., Cпицын М.А., Кузнецова В.Е., Мамаев Д.Д., Лыcов Ю.П., Баpcкий В.Е., Тимофеев Э.Н., Заcедателев А.С., Чудинов А.В. (2018) Получение активныx каpбокcильныx гpупп на повеpxноcти полиэтилентеpефталатной пленки и количеcтвенный анализ этиx гpупп c помощью цифpовой люминеcцентной микpоcкопии. Биофизика. 63, 661–668. https://doi.org/10.1134/S0006350918040127)
  24. Sorokin N.V., Chechetkin V.R., Livshits M.A., Pan’kov S.V., Donnikov M.Y., Gryadunov D.A., Lapa S.A., Zasedatelev A.S. (2014) Discrimination between perfect and mismatched duplexes with oligonucleotide gel microchips: role of thermodynamic and kinetic effects during hybridization. J. Biomol. Struct. Dynamics. 22, 725–734. doi: 10.1080/07391102.2005.10507039

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of amination and fluorescent marking of the surface of an aluminum substrate.

Download (15KB)
3. Fig. 2. Structures of fluorescent dyes Cy5-pNP, Cy5-NH₂ and Cy3-pNP.

Download (14KB)
4. Fig. 3. Micrograph of an aluminum substrate in the light of Cy5 dye fluorescence with an exposure of 100 ms after surface modification with 3-aminopropyltriethoxysilane (APTES) and labeling with Cy5 fluorescent dye. A graph of the signal distribution along the drawn line in the fluorescence image is shown.

Download (22KB)
5. Fig. 4. Schematic diagram of the arrangement of cells on the biochip substrate after UV polymerization through a photomask.

Download (19KB)
6. Fig. 5. Scheme for obtaining cells from brush polymers on the surface of an aluminum substrate (a), activation of carboxyl groups (b), fluorescent labeling of carboxyl groups (c), immobilization of oligonucleotide probes (d) and hybridization with target DNA (d).

Download (58KB)
7. Fig. 6. Microscopic image of brush polymer cells on the surface of an aluminum substrate in reflected visible light. The cells are 200 × 200 μm in size with a pitch of 600 μm.

Download (12KB)
8. Fig. 7. Fluorescence pattern of brush polymer cells on the surface of an aluminum substrate in the light of Cy5 dye fluorescence with an exposure of 10 ms after activation of carboxyl groups and attachment of Cy5-NH₂ dye. A graph of the signal distribution along the drawn line on the fluorescence image is shown.

Download (29KB)
9. Fig. 8. Fluorescence pattern of the chip cells in the Cy3 channel with immobilized DNA probes with microdroplet application of solutions containing various chaotropic reagents. Exposure time 100 ms. Carbonate buffer, pH 9.0, 5% glycerol. 1 – 10% formamide; 2 – 20% formamide; 3 – 10% DMSO; 4 – 20% DMSO; 5 – 0.01% Tween 20; 6 – 0.1% Tween 20; 7 – without additives.

Download (15KB)
10. Fig. 9. Fluorescence pattern of the chip cells on the Cy3 channel with immobilized DNA probes with microdroplet application of solutions containing different concentrations of glycerol. Exposure time 100 ms. Carbonate buffer, pH 9.0, 10% formamide. 1 – empty cells; 2 – 5% glycerol; 3 – 10% glycerol; 4 – 20% glycerol.

Download (9KB)
11. Fig. 10. Fluorescence pattern of the chip cells in the Cy3 channel after immobilization of oligonucleotide probes labeled with Cy3. The graph of the signal distribution along the drawn line in the fluorescence image of row 2 for probe No. 269 is shown.

Download (26KB)
12. Fig. 11. Fluorescence pattern in the Cy5 channel of brush polymer cells on the surface of an aluminum substrate after hybridization with a target labeled with Cy5 dye. The graphs of signal distribution along the drawn line in the fluorescence image of row 1 of probe #268 and row 2 of probe #269 are shown.

Download (41KB)

Copyright (c) 2024 Russian Academy of Sciences