Development of biological microchips on an aluminum support with cells made of brush polymers
- Authors: Shishkin I.Y.1, Shtylev G.F.1, Barsky V.E.1, Lapa S.A.1, Zasedateleva O.A.1, Kuznetsova V.E.1, Shershov V.E.1, Vasiliskov V.A.1, Polyakov S.A.1, Zasedatelev A.S.1, Chudinov A.V.1
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Issue: Vol 58, No 3 (2024)
- Pages: 469-481
- Section: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ БИОПОЛИМЕРОВИ ИХ КОМПЛЕКСОВ
- URL: https://rjeid.com/0026-8984/article/view/655322
- DOI: https://doi.org/10.31857/S0026898424030114
- EDN: https://elibrary.ru/JCDIJI
- ID: 655322
Cite item
Abstract
A method has been developed for manufacturing biological microchips on an aluminum substrate with hydrophilic cells from brush copolymers with the formation of a matrix of cells using photolithography. The surface of aluminum substrates was previously coated with a thin, durable, moderately hydrophobic layer of cross-linked polymer to prevent contact with the aluminum surface of the components used in the analysis of nucleic acids. Aluminum biochip substrates have high thermal conductivity and low heat capacity, which is important for the development of methods for multiplex PCR analysis on a chip. Oligonucleotide probes were covalently immobilized in the cells of the biochip. The preservation of the hybridization activity of the immobilized DNA probes was demonstrated in a hybridization analysis with a synthetic DNA target representing a section of the sequence of the 7th exon of the human ABO gene. The developed methods can be used in the development of a technology for parallel multiple rapid microanalysis of nucleic acids “lab on a chip” for the detection of human somatic and infectious diseases
Full Text

About the authors
I. Yu. Shishkin
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
G. F. Shtylev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
V. E. Barsky
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
S. A. Lapa
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
O. A. Zasedateleva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
V. E. Kuznetsova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
V. E. Shershov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
V. A. Vasiliskov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
S. A. Polyakov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
A. S. Zasedatelev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
A. V. Chudinov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Author for correspondence.
Email: chud@eimb.ru
Russian Federation, Moscow, 119991
References
- Yershov G., Barsky V., Belgovskiy A., Kirillov E., Kreindlin E., Ivanov I., Parinov S., Guschin D., Drobishev A., Dubiley S., Mirzabekov A. (1996) DNA analysis and diagnostics on oligonucleotide microchips. Proc. Natl. Acad. Sci. USA. 93, 4913–4918. doi: 10.1073/pnas.93.10.4913
- Beaudet A.L., Belmont J.W. (2008) Array-based DNA diagnostics: let the revolution begin. Annu. Rev. Med. 59, 113–129. doi: 10.1146/annurev.med.59.012907.101800
- Gryadunov D., Dementieva E., Mikhailovich V., Nasedkina T., Rubina A., Savvateeva E., Fesenko E., Chudinov A., Zimenkov D., Kolchinsky A., Zasedatelev A. (2011) Gel-based microarrays in clinical diagnostics in Russia. Exp. Rev. Mol. Diagn. 11, 839–853. https://doi.org/10.1586/ERM.11.73
- Strizhkov B.N., Drobyshev A.L., Mikhailovich V.M., Mirzabekov A.D. (2000) PCR amplification on a microarray of gel-immobilized oligonucleotides: detection of bacterial toxin- and drug-resistant genes and their mutations. BioTechniques. 29, 844–857. doi: 10.2144/00294rr01
- Tillib S.V., Strizhkov B.N., Mirzabekov A.D. (2001) Integration of multiple PCR amplifications and DNA mutation analyses by using oligonucleotide microchip. Analyt. Biochemistry. 292, 155–160. doi: 10.1006/abio.2001.5082l
- Pemov A., Modi H., Chandler D.P., Bavykin S. (2005) DNA analysis with multiplex microarray-enhanced PCR. Nucl. Acids Res. 33, e11. doi: 10.1093/nar/gnh184
- Khodakov D.A., Zakharova N.V., Gryadunov D.A., Filatov F.P., Zasedatelev A.S., Mikhailovich V.M. (2008) An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. BioTechniques. 44, 241–248. doi: 10.2144/000112628
- Chudinov A.V., Kolganova N.A., Egorov A.E., Fesenko D.O., Kuznetsova V.E., Nasedkina T.V., Vasiliskov V.A., Zasedatelev A.S., Timofeev E.N. (2015) Bridge DNA amplification of cancer-associated genes on cross-linked agarose microbeads. Microchim. Acta. 182, 557–463. doi: 10.1007/s00604–014–1357–8.
- Лапа С.А., Клочихина Е.С., Мифтахов Р.А., Заседателев А.С., Чудинов А.В. (2021) Мультиплексная ПЦР на чипе с прямой детекцией удлинения иммобилизованного праймера. Биоорган. химия. 47, 652–656. https://doi.org/10.31857/S0132342321050298
- Лапа C.А., Мифтахов Р.А., Клочихина Е.С., Аммур Ю.И., Благодатских С.А., Шершов В.Е., Заседателев А.С., Чудинов А.В. (2021) Разработка мультиплексной ОТ-ПЦР с иммобилизованными праймерами для идентификации возбудителей инфекционной пневмонии человека. Молекуляр. биология. 55, 944–955. doi: 10.1134/S0026893321040063)
- Lysov Y., Barsky V., Urasov D., Urasov R., Cherepanov A., Mamaev D., Yegorov Y., Chudinov A., Surzhikov S., Rubina A., Smoldovskaya O., Zasedatelev A. (2017) Microarray analyzer based on wide field fluorescent microscopy with laser illumination and a device for speckle suppression. Biomed. Optics Express. 8, 4798–4810. https://doi.org/10.1364/BOE.8.004798
- Spitsyn M.A., Kuznetsova V.E., Shershov V.E., Emelyanova M.A., Guseinov T.O., Lapa S.A., Nasedkina T.V., Zasedatelev A.S., Chudinov A.V. (2017) Synthetic route to novel zwitterionic pentamethine indocyanine fluorophores with various substitutions. Dyes Pigments. 147, 199–210. http://dx.doi.org/10.1016/j.dyepig.2017.07.052
- Barsky V., Perov A., Tokalov S., Chudinov A., Kreindlin E., Sharonov A., Kotova E., Mirzabekov A. (2002) Fluorescence data analysis on gel-based biochips. J. Biomol. Screening. 7, 247–257. https://doi.org/10.1177/108705710200700308
- Мифтахов Р.А., Иконникова А.Ю., Василисков В.А., Лапа С.А., Левашова А.И., Кузнецова В.Е., Шершов В.Е., Заседателев А.С., Наседкина Т.В., Чудинов А.В. (2023) Биочип с ячейками из щеточных полимеров с реактивными карбоксильными группами для анализа ДНК. Биоорган. химия. 49, 641–648. DOI: S0132342323050044
- Lee J.G., Cheong K.H., Huh N., Kim S., Choi J.W., Ko C. (2006) Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab. Chip. 6, 886–895. https://doi.org/10.1039/B515876A
- Sin E.J., Moon Y.S., Lee Y.K., Lim J.O., Huh J.S., Choi S.Y., Sohn Y.S. (2012) Surface modification of aluminum oxide for biosensing application. Biomed. Engin: Applications, Basis, Commun. 24, 111–116. doi: 10.1142/S1016237212500093
- Chai C., Lee J., Takhistove P. (2010) Direct detection of the biological toxin in acidic environment by electrochemical impedimetric immunosensor. Sensors. 10, 11414–11427. https://doi.org/10.3390/s101211414
- Spitsyn M.A., Kuznetsova V.E., Shershov V.E., Emelyanova M.A., Guseinov T.O., Lapa S.A., Nasedkina T.V., Zasedatelev A.S., Chudinov A.V. (2017) Synthetic route to novel zwitterionic pentamethine indocyanine fluorophores with various substitutions. Dyes Pigments. 147, 199–210. http://dx.doi.org/10.1016/j.dyepig.2017.07.052
- Schubert J., Chanana M. (2019) Coating matters: review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Curr. Med. Chem. 25(35), 4556–4586. doi: 10.2174/0929867325666180601101859
- Sim Y.J., Seo E.K. Choi G.J., Yoon S.J., Jang J. (2009) UV-induced crosslinking of poly(vinil acetate) films containing benzophenone. J. Korean Soc. Dyers Finishers. 21(4), 33–38. doi: 10.5764/TCF.2009.21.4.033
- Qu B.J., Xu Y.H., Ding L.H., Ranby B. (2000) A new mechanism of benzophenone photoreduction in photoinitiated crosslinking of polyethylene and its model compounds. J. Polym. Sci. A: Polym. Chem. 38(6), 999–1005. https://doi.org/10.1002/(SICI)1099–0518(20000315)38:6<999:: AID-POLA9>3.0.CO;2–1
- Ogiwara Y., Kanda M., Takumi M., Kubota H. (1981) Photosensitized grafting on polyolefin films in vapor and liquid phases. J. Polym. Sci. Polym. Lett. Ed. 19, 457. https://doi.org/10.1002/pol.1981.130190905
- Мифтаxов Р.А., Лапа С.А., Шеpшов В.Е., Заcедателева О.А., Гуcейнов Т.О., Cпицын М.А., Кузнецова В.Е., Мамаев Д.Д., Лыcов Ю.П., Баpcкий В.Е., Тимофеев Э.Н., Заcедателев А.С., Чудинов А.В. (2018) Получение активныx каpбокcильныx гpупп на повеpxноcти полиэтилентеpефталатной пленки и количеcтвенный анализ этиx гpупп c помощью цифpовой люминеcцентной микpоcкопии. Биофизика. 63, 661–668. https://doi.org/10.1134/S0006350918040127)
- Sorokin N.V., Chechetkin V.R., Livshits M.A., Pan’kov S.V., Donnikov M.Y., Gryadunov D.A., Lapa S.A., Zasedatelev A.S. (2014) Discrimination between perfect and mismatched duplexes with oligonucleotide gel microchips: role of thermodynamic and kinetic effects during hybridization. J. Biomol. Struct. Dynamics. 22, 725–734. doi: 10.1080/07391102.2005.10507039
Supplementary files
