Biotechnological Potential of the Soil Microbiome
- Autores: Manucharova N.A.1, Vlasova A.P.1, Kovalenko M.A.1, Ovchinnikova E.A.1, Babenko A.D.1, Teregulova G.A.1, Uvarov G.V.1, Stepanov A.L.1
- 
							Afiliações: 
							- Moscow State University
 
- Edição: Volume 93, Nº 2 (2024)
- Páginas: 128-132
- Seção: SHORT COMMUNICATIONS
- URL: https://rjeid.com/0026-3656/article/view/655122
- DOI: https://doi.org/10.31857/S0026365624020056
- ID: 655122
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Molecular biological techniques and bioinformatic analysis were used to investigate the phylogenetic and functional diversity of the prokaryotic complex of soil microcosms. The dominant organisms of the hydrolytic community were different in the samples from different climatic zones. In the soils subject to anthropogenic or abiogenic load, apart from decreased diversity and abundance of prokaryotes, the number of the genes marking the ability to degrade xenobiotics, as well as those encoding nitrogen conversion and metabolism of vitamins and cofactors, was found to increase. Under heavy oil contamination, the bacterial community was capable of nitrification; its role increased in the lower horizons of the soil profile. The patterns revealed in the work indicate high metabolic potential of the prokaryotic component of the studied soils.
Texto integral
 
												
	                        Sobre autores
N. Manucharova
Moscow State University
							Autor responsável pela correspondência
							Email: manucharova@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
A. Vlasova
Moscow State University
														Email: manucharova@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
M. Kovalenko
Moscow State University
														Email: manucharova@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
E. Ovchinnikova
Moscow State University
														Email: manucharova@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
A. Babenko
Moscow State University
														Email: manucharova@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
G. Teregulova
Moscow State University
														Email: manucharova@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
G. Uvarov
Moscow State University
														Email: manucharova@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
A. Stepanov
Moscow State University
														Email: manucharova@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
Bibliografia
- Bürgmann H., Widmer F., Sigler W.V., Zeyer J. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil // Appl. Environ. Microbiol. 2003. V. 69. P. 1928‒1935. https://doi.org/10.1128/AEM.69.4.1928-1935.2003
- Hallin S., Jones C.M., Schloter M., Philippot L. Relationship between n-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment // ISME J. 2009. V. 53. P. 597‒605.
- https://doi.org/10.1038/ismej.2008.128
- Hendrickx B., Junca H., Vosahlova J., Lindner A., Ruegg I., Bucheli-Witschel M., Faber F., Egli T., Mau M., Pieper, D.H., Top E.M., Dejonghe W., Bastiaens L., Springael D. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site // J. Microbiol. Meth. 2006. V. 64. P. 250–265. https://doi.org/10.1016/j.mimet.2005.04.018
- Henry S., Baudouin E., López-Gutiérrez J.C., Martin-Laurent F., Brauman A., Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR // J. Microbiol. Meth. 2004. V. 59. P. 327‒335.
- https://doi.org/10.1016/J.MIMET.2004.07.002
- Gogmachadze L.G., Khusnetdinova K.A., Stepanov A.L., Kravchenko I.K. Microcosm study of ammonium and drying impact on methane oxidation in agricultural soil // J. Agric. Environ. 2023. V. 36. P. 10‒22. https://doi.org/10.23649/JAE.2023.36.7
- Langille M., Zaneveld J., Caporaso J.G., McDonald D., Knights D., Reyes J., Clemente J., Burkepile D., Vega Thurber R., Knight R., Beiko R., Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences // Nat. Biotechnol. 2013. V. 31. P. 814–821.
- https://doi.org/10.1038/nbt.2676
- Manucharova N.A., Pozdnyakov L.A., Vlasova A.P., Yanovich A.S., Ksenofontova N.A., Kovalenko M.A., Stepanov P.Y., Gennadiev A.N., Golovchenko A.V., Stepanov A.L. Metabolically active prokaryotic complex in grassland and forests’ sod-podzol under polycyclic aromatic hydrocarbon influence // Forests. 2021. V. 12. P С. 1103‒1117.
- https://doi.org/10.3390/f12081103
- Manucharova N.A., Ksenofontova N.A., Belov A.A., Kamenskiy N.N., Arzamazova A.V., Zenova G.M., Kinzhaev R.R., Trofimov S.Y., Stepanov A.L. Prokaryotic component of oil-contaminated oligotrophic peat soil under different levels of mineral nutrition: biomass, diversity, and activity // Euras. Soil Sci. 2021. V. 54. P. 89–97.
- https://doi.org/10.31857/s0032180x2101010x
- Markowitz V.M., Chen I.-M.A., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J., Williams P., Huntemann M., Anderson I., Mavromatis K., Ivanova N.N., Kyrpides N.C. IMG: the Integrated Microbial Genomes database and comparative analysis system // Nucl. Acids Res. 2012. V. 40. Database iss. P. D115‒D122.
- https://doi.org/10.1093/nar/gkr1044
- Samarghandi M.R., Arabestani M.R., Zafari D., Rahmani A.R., Afkhami A., Godini K. Bioremediation of actual soil samples with high levels of crude oil using a bacterial consortium isolated from two polluted sites: investigation of the survival of the bacteria // Global NEST J. 2018. V. 20. P. 432–438.
- Sutton N.B., Maphosa F., Morillo J.A., Al-Soud W.A., Langenhoff A.A.M., Grotenhuis T., Rijnaarts H.H.M., Smidt H. Impact of long-term diesel contamination on soil microbial community structure // Appl. Environ. Microbiol. 2013. V. 79. P. 619–630.
- Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy // Appl. Environ. Microbiol. 2007. V. 73. P. 5261–5267.
- https://doi.org/10.1128/AEM.00062-07
- Wang Q., Duan B., Yang R., Zhao Y., Zhang L. Screening and identification of chitinolytic actinomycetes and study on the inhibitory activity against turfgrass root rot disease fungi // J. Biosci. Medic. 2015 V. 3. P. 56065. https://doi.org/10.4236/jbm.2015.33009
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


