FEATURES OF THE APPLICATION OF MATHEMATICAL OPTIMIZATION METHODS FOR THE STUDY OF NANOSTRUCTURES BASED ON X-RAY DIFFRACTION DATA
- Authors: Astaf’ev S.B.1, Yanusova L.G.1
- 
							Affiliations: 
							- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
 
- Issue: Vol 68, No 1 (2023)
- Pages: 100-104
- Section: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://rjeid.com/0023-4761/article/view/673560
- DOI: https://doi.org/10.31857/S0023476123010034
- EDN: https://elibrary.ru/DMXWZF
- ID: 673560
Cite item
Abstract
The features of mathematical optimization methods are considered and algorithms for their use are proposed to increase the efficiency of finding extreme values in solving optimization problems. The proposed algorithms are universal in nature, which allows them to be applied in various fields of computational mathematics. As an illustration, the solution of the inverse problem of reflectometry in the framework of a box model of an electron density profile for a liquid crystal film of a block dendrimer is given. The structure of the thin-film layer on the aqueous subphase was also determined from the grazing-incidence diffraction data. The proposed algorithms of optimization methods are implemented within the analytical software package BARD (Basic Analisys of xRay Diffraction).
About the authors
S. B. Astaf’ev
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
														Email: bard@crys.ras.ru
				                					                																			                												                								Россия, Москва						
L. G. Yanusova
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
							Author for correspondence.
							Email: bard@crys.ras.ru
				                					                																			                												                								Россия, Москва						
References
- X-ray and Neutron Reflectivity: Principles and Applications. Lect. Notes Phys. V. 770 / Eds. Daillant J., Gibaud A. Berlin; Heidelberg: Springer, 2009. 348 p. https://doi.org/10.1007/978-3-540-88588-7
- Ostrovskii B.I., Sulyanov S.N., Boiko N.A. et al. // Eur. Phys. J. E. 2013. V. 36. P. 134. https://doi.org/10.1140/epje/i2013-13134-8
- Алиханов А.И. // Проблемы новейшей физики. Л.; М.: Гос. техн.-теоретич. изд-во, 1933. Вып. III. С. 5.
- Parratt L.G. // Phys. Rev. 1954. V. 95. P. 359. https://doi.org/10.1103/PhysRev.95.359
- Гилл Ф., Мюррей Ю., Райт М. Практическая оптимизация. М.: Мир, 1985. 509 с.
- Астафьев С.Б., Щедрин Б.М., Янусова Л.Г. // Кристаллография. 2012. Т. 57. № 1. С. 141.
- Birkholz M. Thin Film Analysis by X-Ray Scattering. WILEY-VCH, 2006. 356 p.
- Encyclopedia of Optimization. Second Ed. Springer, 2009. 4626 p.
- Dennis J.E., Gay D.M., Welsch R.E. // ACM Trans. Math. Softw. 1981. V. 7. № 3. P. 348.
- Астафьев С.Б., Янусова Л.Г. // Кристаллография. 2022. Т. 67. № 3. С. 491. https://doi.org/10.31857/S0023476122030031
- Астафьев С.Б., Янусова Л.Г. // Поверхность. Рентген., синхротр. и нейтр. исследования. 2021. № 7. С. 56. https://doi.org/10.31857/S1028096021070049
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					

