MICROSTRUCTURE OF A CrSi2 TRANSITION LAYER PRODUCED BY HOT PRESSING OF Cr AND Si
- Authors: Lukasov M.S.1, Arkharova N.A.1, Orekhov A.S.1, Rakova E.V.1, Solomkin F.Y.2, Klechkovskaya V.V.1
- 
							Affiliations: 
							- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
- Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
 
- Issue: Vol 68, No 4 (2023)
- Pages: 615-620
- Section: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://rjeid.com/0023-4761/article/view/673421
- DOI: https://doi.org/10.31857/S002347612360026X
- EDN: https://elibrary.ru/IBYRNK
- ID: 673421
Cite item
Abstract
Hot pressing of a Si single crystal in the bulk of electrolytic Cr powder at 1213 K, with subsequent annealing in air, leads to the formation of an intermediate polycrystalline silicide layer at the interface between the initial components. The phase composition and microstructure of the transition layer and its vicinity were investigated by scanning electron microscopy, X-ray energy-dispersive microanalysis, and electron backscatter diffraction. The transition layer has a crystal structure of the hexagonal phase of chromium disilicide (sp. gr. P6222). An additional annealing up to 120 h leads to insignificant recrystallization of small grains into larger ones.
About the authors
M. S. Lukasov
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
														Email: klechvv@crys.ras.ru
				                					                																			                												                								Россия, Москва						
N. A. Arkharova
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
														Email: natalya.arkharova@yandex.ru
				                					                																			                												                								Россия, Москва						
A. S. Orekhov
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
														Email: klechvv@crys.ras.ru
				                					                																			                												                								Россия, Москва						
E. V. Rakova
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
														Email: klechvv@crys.ras.ru
				                					                																			                												                								Россия, Москва						
F. Yu. Solomkin
Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
														Email: klechvv@crys.ras.ru
				                					                																			                												                								Россия, Санкт-Петербург						
V. V. Klechkovskaya
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
							Author for correspondence.
							Email: klechvv@crys.ras.ru
				                					                																			                												                								Россия, Москва						
References
- Burkov A.T., Ivanov Y.I. // Silicide Thermoelectrics. In Advanced Thermoelectric Materials / Ed. Park C.R. 2019. V. 165.
- Gel’d P.V., Sidorenko F.A. // Silicides of Transition Metals of the Fourth Period. M.: Metallurgiya, 1971. P. 90.
- Gokhale A.B., Abbaschian G.J. // J. Phase Equilibria. 1987. V. 8. P. 474. https://doi.org/10.1007/BF02893156
- Okamoto H. // J. Phase Equilibria. 2001. V. 22 P. 593. https://doi.org/10.1361/105497101770332866
- Boren B. // Archive Chem., Mineral. Geol. 1933. V. 11. P. 1.
- Dauben C.H., Templeton D.H., Myers C.E. // J. Phys. Chem. 1956. V. 60. P. 443. https://doi.org/10.1021/j150538a015
- Tanaka K., Nawata K., Koiwa M. et al. // Mat. Res. Soc. Symp. Proc. 2001. V. 646. P. 4.3.1.
- Соломкин Ф.Ю., Суворова Е.И., Зайцев В.К. и др. // ЖТФ. 2011. Т. 81. № 2. С. 147.
- Соломкин Ф.Ю., Зайцев В.К., Новиков С.В. и др. // ЖТФ. 2013. Т. 83. № 2. С. 141.
- Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф. и др. // ЖТФ. 2010. Т. 80. № 1. С. 152.
- Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф. и др. // ЖТФ. 2010. Т. 80. № 5. С. 157.
- Fedorov M., Zaitsev V. // Thermoelectrics Handbook: Macro to Nano / Ed. Rowe D.M. N.Y.: CRC press, 2006. P. 31.
- Burkov A., Vinzelberg H., Schumann J. et al. // J. Appl. Phys. 2004. V. 95. № 12. P. 7903.
- Novikov S.V., Burkov A.T., Schumann J. // J. Electron. Mater. 2014. V. 43. № 6. P. 2420.
- Novikov S.V., Burkov A.T., Schumann J. // J. Alloys Compd. 2013. V. 557. P. 239.
- Hielscher R., Schaeben C. // J. Appl. Cryst. 2008. V. 41. P. 1024.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



