Growth of Ferroelectric Domains in Polar Direction
- Autores: Shur V.Y.1, Pelegova E.V.1, Turygin A.P.1, Kosobokov M.S.1, Alikin Y.M.1
- 
							Afiliações: 
							- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia
 
- Edição: Volume 68, Nº 5 (2023)
- Páginas: 767-775
- Seção: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://rjeid.com/0023-4761/article/view/673353
- DOI: https://doi.org/10.31857/S0023476123600611
- EDN: https://elibrary.ru/ECXUGO
- ID: 673353
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The forward domain growth in polar direction has been investigated on the example of the formation of isolated wedge-shaped domains and arrays of domains on lithium niobate nonpolar cuts under an electric field of a scanning probe microscope. Domain growth occurs due to the generation of steps and motion of charged kinks along charged domain walls (CDWs). A simulation of field spatial distribution showed that the generation of steps near a domain vertex is mainly caused by the effect of external field, whereas the forward growth is due to the kink motion in the field induced by neighboring kinks. Scanning by a probe tip with an applied voltage leads to the self-assembled formation of domain arrays with domain length alternation: doubling, quadrupling, and chaotic behavior under the action of the depolarizing fields formed by three neighboring domains.
Sobre autores
V. Shur
Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia
														Email: vladimir.shur@urfu.ru
				                					                																			                												                								Россия, Екатеринбург						
E. Pelegova
Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia
														Email: vladimir.shur@urfu.ru
				                					                																			                												                								Россия, Екатеринбург						
A. Turygin
Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia
														Email: vladimir.shur@urfu.ru
				                					                																			                												                								Россия, Екатеринбург						
M. Kosobokov
Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia
														Email: vladimir.shur@urfu.ru
				                					                																			                												                								Россия, Екатеринбург						
Yu. Alikin
Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia
							Autor responsável pela correspondência
							Email: vladimir.shur@urfu.ru
				                					                																			                												                								Россия, Екатеринбург						
Bibliografia
- Tagantsev A.K., Cross L.E., Fousek J. Domains in ferroic crystals and thin films. Berlin: Springer, 2010. 822 p. https://doi.org/10.1007/978-1-4419-1417-0
- Newnham R.E., Miller C.S., Cross L.E. et al. // Phys. Status Solidi. 1975. V. 32. P. 69. https://doi.org/10.1002/pssa.2210320107
- Wada S. // Ferroelectrics. 2009. V. 389. P. 3. https://doi.org/10.1080/00150190902987335
- Shur V.Ya. // Advanced piezoelectric materials / Ed. Uchino K. Cambridge: Woodhead Publishing, 2017. P. 235. https://doi.org/10.1016/B978-0-08-102135-4.00006-0
- Fejer M.M., Magel G.A., Jundt D.H. et al. // IEEE J. Quantum Electron. 1992. V. 28. P. 2631. https://doi.org/10.1109/3.161322
- Hum D.S., Fejer M.M. // C. R. Phys. 2007. V. 8. P. 180. https://doi.org/10.1016/j.crhy.2006.10.022
- Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Ferroelectrics. 2000. V. 236. P. 129. https://doi.org/10.1080/00150190008016047
- Shur V.Ya., Akhmatkhanov A.R., Baturin I.S. // Appl. Phys. Rev. 2015. V. 2. P. 040604. https://doi.org/10.1063/1.4928591
- Классен-Неклюдова М.В., Чернышева М.А., Штернберг А.А. // Докл. АН СССР. 1948. Т. 18. С. 527.
- Matthias B., von Hippel A. // Phys. Rev. 1948. V. 73. P. 1378. https://doi.org/10.1103/PhysRev.73.1378
- Merz W.J. // Phys. Rev. 1954. V. 95. P. 690. https://doi.org/10.1103/PhysRev.95.690
- Little E.A. // Phys. Rev. 1955. V. 98. P. 978. https://doi.org/10.1103/PhysRev.98.978
- Le Bihan R. // Ferroelectrics. 1988. V. 97. P. 19. https://doi.org/10.1080/00150198908018081
- Gruverman A., Auciello O., Tokumoto H. // Annu. Rev. Mater. Sci. 1998. V. 28. P. 101. https://doi.org/10.1146/annurev.matsci.28.1.101
- Kholkin A.L., Kalinin S.V., Roelofs A., Gruverman A. // Scanning probe microscopy / Eds. Kalinin S., Gruverman A. New York: Springer, 2007. P. 173. https://doi.org/10.1007/978-0-387-28668-6_7
- Shur V.Ya. // Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications / Ed. Ye G.-Z. Cambridge: Woodhead Publishing, 2008. P. 622.
- Gopalan V., Mitchell T.E. // J. Appl. Phys. 1998. V. 83. P. 941. https://doi.org/10.1063/1.366782
- Shur V.Ya., Lobov A.I., Shur A.G. et al. // Appl. Phys. Lett. 2005. V. 87. P. 022905. https://doi.org/10.1063/1.1993769
- Alikin D.O., Ievlev A.V., Turygin A.P. et al. // Appl. Phys. Lett. 2015. V. 106. P. 182902. https://doi.org/10.1063/1.4919872
- Zalessky V.G., Fregatov S.O. // Phys. B. Condens. Matter. 2006. V. 371. P. 158. https://doi.org/10.1016/j.physb.2005.10.097
- Kokhanchik L.S., Borodin M.V., Shandarov S.M. et al. // Phys. Solid State. 2010. V. 52. P. 1722. https://doi.org/10.1134/S106378341008024X
- Volk T.R., Kokhanchik L.S., Gainutdinov R.V. et al. // Ferroelectrics. 2016. V. 500. P. 129. https://doi.org/10.1080/00150193.2016.1214527
- Ievlev A.V., Alikin D.O., Morozovska A.N. et al. // ACS Nano. 2015. V. 9. P. 769. https://doi.org/10.1021/nn506268g
- Turygin A.P., Alikin D.O., Alikin Yu.M. et al. // Materials. 2017. V. 10. P. 1143. https://doi.org/10.3390/ma10101143
- Lilienblum M., Soergel E. // J. Appl. Phys. 2011. V. 110. P. 052018. https://doi.org/10.1063/1.3623775
- Bühlmann S., Colla E., Muralt P. // Phys. Rev. B. 2005. V. 72. P. 214120. https://doi.org/10.1103/PhysRevB.72.214120
- Turygin A.P., Alikin D.O., Kosobokov M.S. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 36211. https://doi.org/10.1021/acsami.8b10220
- Ievlev A.V., Morozovska A.N., Eliseev E.A. et al. // Nat. Commun. 2014. V. 5. P. 4545. https://doi.org/10.1038/ncomms5545
- Kim Y., Bühlmann S., Hong S. et al. // Appl. Phys. Lett. 2007. V. 90. P. 072910. https://doi.org/10.1063/1.2679902
- Abplanalp M., Fousek J., Günter P. // Phys. Rev. Lett. 2001. V. 86. P. 5799. https://doi.org/10.1103/PhysRevLett.86.5799
- Ievlev A.V., Morozovska A.N., Shur V.Ya. et al. // Phys. Rev. B. 2015. V. 91. P. 214109. https://doi.org/10.1103/PhysRevB.91.214109
- Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Appl. Phys. Lett. 2000. V. 76. P. 143. https://doi.org/10.1063/1.125683
- Shur V.Ya., Rumyantsev E.L., Batchko R.G. et al. // Phys. Solid State 1999. V. 41. P. 1681. https://doi.org/0.1134/1.1131068
- Muller M., Soergel E., Buse K. // Opt. Lett. 2003. V. 28. P. 2515. https://doi.org/0.1134/1.1131068
- Molotskii M., Agronin A., Urenski P. et al. // Phys. Rev. Lett. 2003. V. 90. P. 107601. https://doi.org/10.1103/PhysRevLett.90.107601
- Molotskii M., Rosenwaks Y., Rosenman G. // Annu. Rev. Mater. Res. 2007. V. 37. P. 271. https://doi.org/10.1146/annurev.matsci.37.052506.084223
- Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Appl. Phys. Lett. 2000. V. 77. P. 3636. https://doi.org/10.1063/1.1329327
- Sluka T., Tagantsev A.K., Bednyakov P. et al. // Nat. Commun. 2013. V. 4. P. 1808. https://doi.org/10.1038/ncomms2839
- Campbell M.P., McConville J.P.V., McQuaid R.G.P. et al. // Nat. Commun. 2016. V. 7. P. 13764. https://doi.org/10.1038/ncomms13764
- Esin A.A., Akhmatkhanov A.R., Shur V.Ya. // Appl. Phys. Lett. 2019. V. 114. P. 092901. https://doi.org/10.1063/1.5079478
- Pertsev N.A., Kholkin A.L. // Phys. Rev. B. 2013. V. 88. P. 174109. https://doi.org/10.1103/PhysRevB.88.174109
- Agronin A., Molotskii M., Rosenwaks Y. et al. // J. Appl. Phys. 2006. V. 99. P. 104102. https://doi.org/10.1063/1.2197264
- Shur V.Ya., Ievlev A.V., Nikolaeva E.V. et al. // J. Appl. Phys. 2011. V. 110. P. 052017. https://doi.org/10.1063/1.3624798
- Shur V.Ya. // Nucleation theory and applications / Ed. Schmelzer J.W.P. Weinheim: Wiley-VCH, 2005. P. 178. https://doi.org/10.1002/3527604790.ch6
- Shur V.Ya. // J. Mater. Sci. 2006. V. 41. P. 199. https://doi.org/10.1007/s10853-005-6065-7
- Agronin A., Molotskii M., Rosenwaks Y. et al. // J. Appl. Phys. 2006. V. 99. P. 104102. https://doi.org/10.1063/1.2197264
- Greshnyakov E.D., Turygin A.P., Pryakhina V.I. et al. // J. Appl. Phys. 2022. V. 131. P. 214103. https://doi.org/10.1063/5.0093200
- Fatuzzo E., Merz W.J. Ferroelectricity. Amsterdam: North-Holland Publishing Company, 1967. P. 289.
- Miller R.C., Weinreich G. // Phys. Rev. 1960. V. 117. P. 1460. https://doi.org/10.1103/PhysRev.117.1460
- Cahn J.W. // Acta Metall. 1960. V. 8. P. 554. https://doi.org/10.1016/0001-6160(60)90110-3
- Shur V.Ya. // Ferroelectric thin films: synthesis and basic properties / Eds. Paz de Araujo C.A. et al. Amsterdam: Gordon & Breach Science Publishers, 1996. P. 153.
- Marwan N., Romano M.C., Thiel M. et al. // Phys. Rep. 2007. V. 438. P. 237. https://doi.org/10.1016/j.physrep.2006.11.001
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






