Microstructure of gold nanoparticles obtained from a solution of hydrochloroauric acid by picosecond laser irradiation
- Autores: Vasiliev A.L.1, Ivanova A.G.1, Bondarenko V.I.1, Golovin A.L.1, Kononenko V.V.2, Ashikkalieva K.K.2, Zavedeev E.V.2, Konov V.I.2
- 
							Afiliações: 
							- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
 
- Edição: Volume 69, Nº 2 (2024)
- Páginas: 243-251
- Seção: REAL STRUCTURE OF CRYSTALS
- URL: https://rjeid.com/0023-4761/article/view/673204
- DOI: https://doi.org/10.31857/S0023476124020078
- EDN: https://elibrary.ru/YTHIDH
- ID: 673204
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The morphology and crystal structure of Au nanoparticles obtained by irradiating an aqueous solution of Hydrochloroauric acid (HAuCl4) with laser pulses were investigated using transmission electron microscopy, electron diffraction, and electron tomography methods. Along with round and shapeless particles characterized by a cubic structure with twins, there are flat particles with trigonal morphology. Such particles have a layered microstructure, with an alternation of face-centered cubic and close-packed hexagonal crystal structure of layers parallel to the base planes of the prism.
Texto integral
 
												
	                        Sobre autores
A. Vasiliev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
							Autor responsável pela correspondência
							Email: a.vasiliev56@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
A. Ivanova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
V. Bondarenko
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
A. Golovin
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
V. Kononenko
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
K. Ashikkalieva
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
E. Zavedeev
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
V. Konov
Institute of General Physics named after A. M. Prokhorov, Russian Academy of Sciences
														Email: a.vasiliev56@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Amendola V., Amans D., Ishikawa Y. et al. // Chemistry. 2020. V. 26. № 42. P. 9206. https://doi.org/10.1002/chem.202000686
- Rakov I.I., Pridvorova S.M., Shafeev G.A. // Laser Phys. Lett. 2019. V. 17. № 1. 016004. https://doi.org/10.1088/1612-202X/ab5c21
- Smirnov V.V., Zhilnikova M.I., Barmina E.V. et al. // Chem. Phys. Lett. 2021. V. 763. 138211. https://doi.org/10.1016/j.cplett.2020.138211
- Pavlov I.S., Barmina E.V., Zhilnikova M.I. et al. // Nanobiotechnology Reports. 2022. V. 17. № 3. P. 290. https://doi.org/10.1134/S2635167622030132
- John M.G., Meader V.K., Tibbetts K.M. // Photochemistry and Photophysics – Fundamentals to Applications / Ed. Saha S. IntechOpen, 2018. P. 137. https://doi.org/10.5772/intechopen.75075
- Okamoto T., Nakamura T., Sakota K., Yatsuhashi T. // Langmuir. 2019. V. 35. № 37. P. 12123. https://doi.org/10.1021/acs.langmuir.9b01854
- Ashikkalieva K.K., Kononenko V.V., Vasil’ev A.L. et al. // Phys. Wave Phen. 2022. V. 30. P. 17. https://doi.org/10.3103/S1541308X22010046
- Rodrigues C.J., Bobb J.A., John M.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 45. P. 28465. https://doi.org/10.1039/C8CP05774E
- Nakamura T., Herbani Y., Ursescu D. et al. // AIP Adv. 2013 V. 3. № 8. P. 082101. https://doi.org/10.1063/1.4817827
- Nakamura T., Mochidzuki Y., Sato S. // J. Mater. Res. 2008. V. 23. № 4. P. 968. https://doi.org/10.1557/jmr.2008.0115
- Barbosa H.F.P., Neumanna M.G., Cavalheiro C.C.S. // J. Braz. Chem. Soc. 2019. V. 30. № 4. P. 813. https://doi.org/10.21577/0103-5053.20180213
- Tibbetts K.M., Tangeysh B., Odhner J.H., Levis R.J. // J. Phys. Chem. A. 2016 V. 120. № 20. P. 3562. https://doi.org/10.1021/acs.jpca.6b03163
- Kumar V., Ganesan S. // Int. J. Green Nanotechnol. 2011. V. 3. № 1. P. 47. https://doi.org/10.1080/19430892.2011.574538
- Muttaqin, Nakamura T., Sato S. // Appl. Phys. A. 2015. V. 120. P. 881. https://doi.org/10.1007/s00339-015-9314-x
- Nakashima N., Yamanaka K., Saeki M. et al. // J. Photochem. Photobiol. A. 2016. V. 319–320. P. 70. https://doi.org/10.1016/j.jphotochem.2015.12.021
- Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
- Das M., Shim K.H., An S.S.A., Yi D.K. // Toxicol. Environ. Health Sci. 2011. V. 3. № 4. P. 193. https://doi.org/10.1007/s13530-011-0109-y
- Дыкман Л.А., Богатырев В.А., Щеголев С.Ю., Хлебцов Н.Г. Золотые наночастицы: синтез, свойства, биомедицинское применение. М.: Наука, 2008. 319 с.
- Dykman L.A., Khlebtsov N.G. // Acta Naturae. 2011. V. 3. № 2. P. 34.
- Nurmukhametov D.R., Zvekov A.A., Zverev A.S. et al. // Quantum Electron. 2017. V. 47. № 7. P. 647. https://doi.org/10.1070/QEL16329
- Krainov A.D., Agrba P.D., Sergeeva E.A. et al. // Quantum Electron. 2014. V. 44. № 8. P. 757. https://doi.org/10.1070/QE2014v044n08ABEH015494
- Simakin A.V., Voronov V.V., Shafeev G.A. // Phys. Wave Phen. 2007. V. 15. № 4. P. 218. https://doi.org/10.3103/S1541308X07040024
- Tangeysh B., Tibbetts K.M., Odhner J.H. et al. // Langmuir. 2017. V. 33. № 1. P. 243. https://doi.org/10.1021/acs.langmuir.6b03812
- Ashikkalieva K.K., Kononenko V.V., Arutyunyan N.R. et al. // Phys. Wave Phenom. 2023. V. 31. № 1. P. 44. https://doi.org/10.3103/S1541308X23010016
- Pashley D.W., Stowell M.J. // Philos. Mag. 1963. V. 8. P. 1605.
- Davey J.E., Deiter R.H. // J. Appl. Phys. 1965. V. 36. P. 284.
- Davey W.P. // Phys. Rev. 1925. V. 25. P. 753.
- Kirkland A.I., Edwards P.P., Jefferson D.A., Duff D.G. // Annu. Rep. Prog. Chem. C. 1990. V. 87. P. 247. https://doi.org/10.1039/PC9908700247
- Kirkland A.I., Jefferson D.A., Duff D.G. et al. // Proc. R. Soc. Lond. A. 1993. V. 440. P. 589.
- Germain V., Li J., Ingert D. et al. // J. Phys. Chem. B. 2003. V. 107. № 34. P. 8717.
- Morriss R.H., Bottoms W.R., Peacock R.G. // J. Appl. Phys. 1968. V. 39. P. 3016.
- Cherns D. // Philos. Mag. 1974. V. 30. P. 549.
- Castaño V., Gómez A., José Yacamán M. // Surface Sci. Lett. 1984. V. 146. № 2. P. L587. https://doi.org/10.1016/0167-2584(84)90756-4
- Reyes-Gasga J., Gómez-Rodríguez A., Gao X., Yacamán M.J. // Ultramicroscopy. 2008. V. 108. P. 929. https://doi.org/10.1016/j.ultramic.2008.03.005
- Mendoza-Ramirez M.C., Silva-Pereyra H.-G., Avalos-Borja M. // Mater. Characterization. 2020. V. 164. P. 110313.
- Midgley P.A., Eggeman A.S. // IUCrJ. 2015. V. 2. P. 126. https://doi.org/10.1107/S2052252514022283
- Palatinus L., Brázda P., Jelínek M. et al. // Acta Cryst. B. 2019. V. 75. № 4. P. 512. https://doi.org/10.1107/S2052520619007534
- Liu J., Niu Wenxin., Liu G. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4387.
- Park G.-S., Min K.S., Kwon H. et al. // Adv. Mater. 2021. Article 2100653. P. 1.
- Huang X., Li H., Li S. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 12245.
- Jany B., Gauquelin N., Willhammar T. et al. // Sci. Rep. 2017. V. 7. P. 42420. https://doi.org/10.10/srep42420
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







