Electro-induced photonic structures in cholesteric and nematic liquid crystals
- Authors: Palto S.P.1, Geivandov A.R.1, Kasyanova I.V.1, Rybakov D.O.1, Simdyankin I.V.1, Umansky B.A.1, Shtykov N.M.1
- 
							Affiliations: 
							- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
 
- Issue: Vol 69, No 2 (2024)
- Pages: 192-205
- Section: REVIEWS
- URL: https://rjeid.com/0023-4761/article/view/673200
- DOI: https://doi.org/10.31857/S0023476124020036
- EDN: https://elibrary.ru/YTXZTR
- ID: 673200
Cite item
Abstract
This paper reviews recent research performed at the liquid crystals laboratory of the A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, focusing on photonic liquid crystalline structures induced by electric fields. Due to field-induced spatial modulation of the refractive index, such structures exhibit optical properties characteristic of photonic crystals. Two types of structures are discussed. The first type is induced in cholesteric liquid crystals with spontaneous formation of a helical director distribution. The orientation transition to a state with a lying helix – with the axis in the plane of the layer – is considered. The second type consists of homogeneous layers of non-chiral nematic liquid crystals, where the modulation of the refractive index arises due to the flexoelectric instability effect. In both cases, periodic boundary conditions of molecule orientation are crucial. Methods of forming boundary conditions and the photonic properties of structures are reviewed.
Full Text
 
												
	                        About the authors
S. P. Palto
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
							Author for correspondence.
							Email: serguei.palto@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
A. R. Geivandov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: serguei.palto@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
I. V. Kasyanova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: serguei.palto@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
D. O. Rybakov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: serguei.palto@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
I. V. Simdyankin
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: serguei.palto@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
B. A. Umansky
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: serguei.palto@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
N. M. Shtykov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: serguei.palto@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Schadt M. // Annu. Rev. Mater. Sci. 1997. V. 27. P. 305. https://doi.org/10.1146/annurev.matsci.27.1.305
- Hsiang E.-L., Yang Z., Yang Q. et al. // Adv. Opt. Photonics. 2022. V. 14. P. 783. https://doi.org/10.1364/aop.468066
- Yin K., Hsiang E.-L., Zou J. et al. // Light Sci. Appl. 2022. V. 11. P. 161. https://doi.org/10.1038/s41377-022-00851-3
- Li X., Li Y., Xiang Y. et al. //. Opt. Express. 2016. V. 24. P. 8824. https://doi.org/10.1364/OE.24.008824
- Davis S.R., Farca G., Rommel S.D. et al. // Proc. SPIE. 2010. V. 7618. P. 76180E-1. https://doi.org/10.1117/12.851788
- Brown C.M., Dickinson D.K.E., Hands P.J.W. // Opt. Laser Technol. 2021. V. 140. P. 107080. https://doi.org/10.1016/j.optlastec.2021.107080
- Coles H., Morris S. // Nat. Photonics. 2010. V. 4. P. 676. https://doi.org/10.1038/nphoton.2010.184
- Ortega J., Folcia C.L., Etxebarria J. // Liq. Cryst. 2022. V. 49. P. 427. https://doi.org/10.1080/02678292.2021.1974584
- Inoue Y., Yoshida H., Inoue K. et al. // Appl. Phys. Express. 2010. V. 3. P. 102702. https://doi.org/10.1143/apex.3.102702
- Palto S.P., Geivandov A.R., Kasyanova I.V. et al. // Opt. Lett. 2021. V. 46. P. 3376. https://doi.org/10.1364/OL.426904
- Kasyanova I.V., Gorkunov M.V., Palto S.P. // Europhys. Lett. 2022. V. 136. P. 24001. https://doi.org/10.1209/0295-5075/ac4ac9
- Gorkunov M.V., Kasyanova I.V., Artemov V.V. et al. // ACS Photonics. 2020. V. 7. P. 3096. https://doi.org/10.1021/acsphotonics.0c01168
- Shtykov N.M., Palto S.P., Geivandov A.R. et al. // Opt. Lett. 2020. V. 45. P. 4328. https://doi.org/10.1364/ol.394430
- Palto S.P. // Crystals. 2019. V. 9. P. 469. https://doi.org/10.3390/cryst9090469
- Kopp V.I., Zang Z.-Q., Genack A.Z. // Prog. Quantum Electron. 2003. V. 27. P. 369. https://doi.org/10.1016/S0079-6727(03)00003-X
- Kogelnik H., Shank C.V. // J. Appl. Phys. 1972. V. 43. P. 2327. https://doi.org/10.1063/1.1661499
- Palto S.P., Shtykov N.M., Kasyanova I.V. et al. // Liq. Cryst. 2020. V. 47. P. 384. https://doi.org/10.1080/02678292.2019.1655169
- Вистинь Л.К. // Докл. АН СССР. 1970. Т. 194. № 6. С. 1318.
- Williams R. // J. Chem. Phys. 1963. V. 39. P. 384. https://doi.org/10.1063/1.1734257
- Бобылев Ю.П., Пикин С.А. // ЖЭТФ. 1977. Т. 72. С. 369.
- Пикин С.А. Структурные превращения в жидких кристаллах. М.: Наука, 1981. 336 с.
- Барник М.И., Блинов Л.М., Труфанов А.Н. и др. // ЖЭТФ. 1977. Т. 73. С. 1936.
- Barnik M.I., Blinov L.M., Trufanov A.N. et al. // J. Phys. France. 1978. V. 39. № 4. P. 417. https://doi.org/10.1051/jphys:01978003904041700
- Meyer R.B. // Phys. Rev. Lett. 1969. V. 22. P. 918. https://doi.org/10.1103/PhysRevLett.22.918
- Palto S.P. // Crystals. 2021. V. 11. P. 894. https://doi.org/10.3390/cryst11080894
- Simdyankin I.V., Geivandov A.R., Umanskii B.A. et al. // Liq. Cryst. 2023. V. 50. № 4. P. 663. https://doi.org/10.1080/02678292.2022.2154865
- Палто С.П., Гейвандов А.Р., Касьянова И.В. и др. // Письма в ЖЭТФ. 2017. Т. 105. Вып. 3. С. 158. https://doi.org/10.7868/S0370274X17030067
- Kasyanova I.V., Gorkunov M.V., Artemov V.V. et al. // Opt. Express. 2018. V. 26. P. 20258. https://doi.org/10.1364/oe26.020258
- Gorkunov M.V., Kasyanova I.V., Artemov V.V. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1691. https://doi.org/10.3762/bjnano.10.164
- Артемов В.В., Хмеленин Д.Н., Мамонова А.В. и др. // Кристаллография. 2021. Т. 66. № 4. С. 636. https://doi.org/10.31857/S0023476121040032
- Непорент Б.С., Столбова О.В. // Оптика и спектроскопия. 1963. T. 14. Вып. 5. С. 624.
- Макушенко А.М., Непорент Б.С., Столбова О.В. // Оптика и спектроскопия. 1971. T.31. Вып. 4. С. 557.
- Козенков В.М., Юдин С.Г., Катышев Е.Г. и др. // Письма в ЖЭТФ. 1986. Т. 12. № 20. С. 1267.
- Ostrovskii B.I., Palto S.P. // Liq. Cryst. Today. 2023. V. 32. P. 18. https://doi.org/10.1080/1358314X.2023.2265788
- Palto S.P., Shtykov N.M., Khavrichev V.A. et al. // Mol. Mater. 1992. V. 1. P. 3.
- Palto S.P., Khavrichev V.A., Yudin S.G. et al. // Mol. Mater. 1992. V. 2. P. 63.
- Palto S.P., Blinov L.M., Yudin S.G. et al. // Chem. Phys. Lett. 1993. V. 202. P. 308. https://doi.org/10.1016/0009-2614(93)85283-t
- Palto S.P., Durand G. // J. Phys. II France. 1995. V. 5. P. 963. https://doi.org/10.1051/jp2:1995223
- Palto S.P., Yudin S.G., Germain C. et al. // J. Phys. II France. 1995. V. 5. P. 133. https://doi.org/10.1051/jp2:1995118
- Kwok H.S., Chigrinov V.G., Takada H. et al. // J. Display Technol. 2005. V. 1. P. 41. https://doi.org/10.1109/jdt.2005.852512
- Shteyner E.A., Srivastava A.K., Chigrinov V.G. et al. // Soft Matter. 2013. V. 9. P. 5160. https://doi.org/10.1039/c3sm50498k
- Chen D., Zhao H., Yan K. et al. // Opt. Express. 2019. V. 27. P. 29332. https://doi.org/10.1364/oe.27.029332
- Geivandov A.R., Simdyankin I.V., Barma D.D. et al. // Liq. Cryst. 2022. V. 49. P. 2027. https://doi.org/10.1080/02678292.2022.2094004
- Salter P.S., Carbone G., Jewell S.A. et al. // Phys. Rev. E. 2009. V. 80. P. 041707. https://doi.org/10.1103/PhysRevE.80.041707
- Yu C.-H., Wu P.-C., Lee W. // Crystals. 2019. V. 9. P. 183. https://doi.org/10.3390/cryst9040183
- Kahn F.J. // Phys. Rev. Lett. 1970. V. 24. P. 209. https://doi.org/10.1103/PhysRevLett.24.209
- Palto S.P., Barnik M.I., Geivandov A.R. et al. // Phys. Rev. E. 2015. V. 92. P. 032502. https://doi.org/10.1103/PhysRevE.92.032502
- Link D.R., Nakata M., Takanishi Y. et al. // Phys. Rev. E. 2001. V. 65. P. 010701(R). https://doi.org/10.1103/PhysRevE.65.010701
- Palto S.P., Mottram N.J., Osipov M.A. // Phys. Rev. E. 2007. V 75. P. 061707. https://doi.org/10.1103/PhysRevE.75.061707
- Xiang Y., Jing H.-Z., Zhang Z.-D. et al. // Phys. Rev. Appl. 2017. V. 7. P. 064032. https://doi.org/10.1103/PhysRevApplied.7.064032
- Škarabot M., Mottram N.J., Kaur S. et al. // ACS Omega. 2022. V. 7. P. 9785. https://doi.org/10.1021/acsomega.2c00023
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted










