Structure of inorganic compounds halogen bonds in derivatives of 2,5-diiod-1,4-dimethylbenzene
- Autores: Rajakumar K.1, Zherebtsov D.A.1, Nayfert S.А.1, Osipov A.А.1, Adonin S.A.1,2, Spiridonova D.V.3
- 
							Afiliações: 
							- South Ural State University
- A. E. Favorsky Irkutsk Institute of Chemistry SB RAS
- St. Petersburg State University
 
- Edição: Volume 69, Nº 4 (2024)
- Páginas: 612-619
- Seção: STRUCTURE OF ORGANIC COMPOUNDS
- URL: https://rjeid.com/0023-4761/article/view/673149
- DOI: https://doi.org/10.31857/S0023476124040062
- EDN: https://elibrary.ru/XDHKLT
- ID: 673149
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The synthesis of 1,4-di(bromomethyl)-2,5-diiodo-benzene (1), diacetate of 2,5-diiodo–1,4-di(hydroxymethyl)benzene (2) and diiodide of 1,1’-[(2,5-diiodo-1,4-phenylene)bis(methylene)]dipyridinium (3) is described and their crystallographic data are given. All three crystal structures are characterized by the stacked packing of planar molecules and the presence of halogen bonds I–Br, I–O, and I–I, respectively. The number of halogen bonds is maximum in compound 1: two I–Br bonds for each halogen atom. Compounds 2 and 3 contain one halogen bond per halogen atom, but they are significantly shorter than in compound 1. All crystals were investigated by IR spectroscopy and synchronized thermal analysis. Compound 1, which has no ionic or hydrogen bonds, melts at a higher temperature than ionic compound 3 (218 and 200°C, respectively) due to the presence of a large number of intermolecular halogen bonds. Compound 2 melts at a lower temperature (151°C), which is characteristic of esters.
Texto integral
 
												
	                        Sobre autores
K. Rajakumar
South Ural State University
														Email: zherebtcovda@susu.ru
				                					                																			                												                	Rússia, 							Chelyabinsk						
D. Zherebtsov
South Ural State University
							Autor responsável pela correspondência
							Email: zherebtcovda@susu.ru
				                					                																			                												                	Rússia, 							Chelyabinsk						
S. Nayfert
South Ural State University
														Email: zherebtcovda@susu.ru
				                					                																			                												                	Rússia, 							Chelyabinsk						
A. Osipov
South Ural State University
														Email: aaosipov@susu.ru
				                					                																			                												                	Rússia, 							Chelyabinsk						
S. Adonin
South Ural State University; A. E. Favorsky Irkutsk Institute of Chemistry SB RAS
														Email: zherebtcovda@susu.ru
				                					                																			                												                	Rússia, 							Chelyabinsk; Irkutsk						
D. Spiridonova
St. Petersburg State University
														Email: zherebtcovda@susu.ru
				                					                																			                								
Научный парк
Rússia, St. PetersburgBibliografia
- Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
- Mikherdov A.S., Novikov A.S., Boyarskiy V.P et al. // Nature Commun. 2020. V. 11. 2921. https://doi.org/10.1038/s41467-020-16748-x
- Matveychuk Y.V., Ilkaeva M.V., Vershinina E.A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.31857/S0044457X21100202
- Yushina I., Tarasova N., Kim D. et al. // Crystals. 2019. V. 9. P. 506. https://doi.org/10.3390/cryst9100506
- Albright E., Cann J., Decken A. et al. // Cryst. Eng. Commun. 2017. V. 19. P. 1024. https://doi.org/10.1039/C6CE02339H
- Baykov S.V., Filimonov S.I., Rozhkov A.V. et al. // Cryst. Growth Des. 2020. V. 20. P. 995.
- Albietz P.J., Cleary B.P., Paw W. et al. // J. Am. Chem. Soc. 2001. V. 123. P. 12091. https://doi.org/10.1021/ja016127l
- Albietz P.J., Cleary B.P., Paw W. et al. // Inorg. Chem. 2002. V. 41. P. 2095. https://doi.org/10.1021/ic025506s
- Rajakumar K., Sharutin V.V., Adonin S.A. et al. // J. Struct. Chem. 2022. V. 63. P. 620. https://doi.org/10.1134/S0022476622040138
- Grunder S., Huber R., Horhoiu V. et al. // J. Org. Chem. 2007. V. 72. P. 8337. https://doi.org/10.1021/jo7013998
- Gaefke G., Enkelmann V., Höger S. // Synthesis. 2006. V. 17. P. 2971. https://doi.org/10.1055/s-2006-942534
- Costa A.L., Ferreira L.F., Prata J.V. // J. Polym. Sci. A. Polym. Chem. 2008. V. 46. P. 6477. https://doi.org/10.1002/pola.22957
- Hodecker M., Kozhemyakin Y., Weigold S. et al. // Chem. Eur. J. 2020. V. 26. P. 16990. https://doi.org/10.1002/chem.202002552.
- Jordan R.S., Wang Y., McCurdy R.D. et al. // Chem. 2016. V. 1. P. 78. https://doi.org/10.1016/j.chempr.2016.06.010
- Fan Q.-L., Lu S., Lai Y.-H. et al. // Macromolecules. 2003. V. 36. P. 6976. https://doi.org/10.1021/ma030093f
- Nishinaga S., Sawanaka Y., Toyama R. et al. // Chem. Lett. 2018. V. 47. P. 1409. https://doi.org/10.1246/cl.180644
- Horváth D.V., Holczbauer T., Bereczki L. et al. // CrystEngComm. 2018. V. 13. https://doi.org/10.1039/c8ce00041g
- CrysAlisPro 1.171.41.103a (Rigaku Oxford Diffraction, 2021).
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806. https://doi.org/10.1021/jp8111556
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





