Torrefaction of Granulated Peat Using Atmospheric Pressure High-Frequency Plasma Discharge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The possibility of using high-frequency induction (HFI) argon plasma of atmospheric pressure for torrefaction of fuel pellets from upland peat to improve combustion efficiency has been demonstrated experimentally. From analyzing the emission spectra of argon plasma during peat surface treatment, the component composition of the plasma flux was determined. The presence of OH radicals was found to have a destructive effect on the natural polymers of peat. As a result of polymer degradation, the compacted fibrous structures forming the peat matrix acquired a loose surface. The methods of thermogravimetric analysis revealed that during pyrolysis pellets lose less mass due to the removal of volatile components during treatment in plasma, and this allows reducing emissions into the atmosphere during combustion.

About the authors

M. B. Shavelkina

Joint Institute of High Temperatures of the Russian Academy of Sciences

Email: mshavelkina@gmail.com
125412 Moscow, Russia

S. D. Fedorovich

National Research University “MPEI”

Moscow, Russia

Yu. M. Faleyeva

Joint Institute of High Temperatures of the Russian Academy of Sciences

125412 Moscow, Russia

M. A. Shavelkin

Joint Institute of High Temperatures of the Russian Academy of Sciences

125412 Moscow, Russia

D. I. Kavyrshin

Joint Institute of High Temperatures of the Russian Academy of Sciences

125412 Moscow, Russia

G. E. Valliano

Joint Institute of High Temperatures of the Russian Academy of Sciences

125412 Moscow, Russia

References

  1. Basu P., Biomass Gasification, Pyrolysis and Torrefaction, Academic Press; 2018b, 3rd ed.
  2. Tumuluru J. S., Sokhansanj S., Wright C. T., Boardman R. D., 2010. https://doi.org/10.2172/1042391
  3. Shtin S. M., GIAB. 2011, 7. URL. https://cyberleninka.ru/article/n/primenenie-torfa-kak-topliva-dlya-maloy-energetiki. [in Russian].
  4. Morent R., De Geyter N., Verschuren J., De Clerck K., Kiekens P., Leys C. // Surface and Coatings Technology. 2008. V. 202. Р. 3427. https://doi.org/10.1016/j.surfcoat.2007.12.027
  5. Choudhary U., Dey E., Bhattacharyya R., Ghosh S. K. // Adv Res Text Eng. 2018. vol. 3(1). Р. 1019. https://austinpublishinggroup.com/textile-engineering/fulltext/arte-v3-id1019.pdf
  6. Shavelkina M. B., Fedorovich S. D., Kavyrshin D. I., Shavelkin M. A., Faleeva Y. M. // Wood Material Science & Engineering. 2024. P. 1. https://doi.org/10.1080/17480272.2024.2391547
  7. Lu B., Wang X., Hu C., Li. X. // Agriculture. 2024. V. 14(6). Р. 946. https://doi.org/10.3390/agriculture14060946
  8. Tsyganov D., Bundaleska N., Dias A. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. p. 4772. https://doi.org/10.1039/C9CP05509F
  9. Марьяндышев П. А., Кангаш А. И., Скрипниченко В. А., Брийард А. // Химия твердого топлива. 2022. № 4. С. 33. https://doi.org/10.31857/S0023117722040065

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences