Peculiarities in the Radiolysis of β-Diketones
- Authors: Vlasov S.I.1, Smirnova A.A.2, Ponomarev A.V.1, Uchkina D.A.1, Sholokhova A.Y.1, Mitrofanov A.A.2
- 
							Affiliations: 
							- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Faculty of Chemistry, Moscow State University
 
- Issue: Vol 57, No 3 (2023)
- Pages: 218-223
- Section: RADIATION CHEMISTRY
- URL: https://rjeid.com/0023-1193/article/view/661508
- DOI: https://doi.org/10.31857/S0023119323030166
- EDN: https://elibrary.ru/KIFSPQ
- ID: 661508
Cite item
Abstract
Intramolecular hydrogen bonding has a significant effect on the radiolytic transformations of β- diketones. Using the radiolysis of acetylacetone as an example, it has been shown that a hydrogen bond between the hydroxyl and carbonyl in an enol prevents proton transfer from the primary radical cation to the neighboring molecule. As a result, the radiolytic formation of a keto alcohol (4-hydroxy-2-pentanone) was not observed at room temperature, but it was effective under boiling conditions. The intramolecular hydrogen
bond contributed to a significant structural stress in the radical cation, which increased the yield of C–OH bond cleavage and the inhomogeneous formation of acetate (4-oxopent-2-en-2-yl acetate) under normal conditions
Keywords
About the authors
S. I. Vlasov
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: ponomarev@ipc.rssi.ru
				                					                																			                												                								Moscow, 119071 Russia						
A. A. Smirnova
Faculty of Chemistry, Moscow State University
														Email: ponomarev@ipc.rssi.ru
				                					                																			                												                								Moscow, 119991 Russia						
A. V. Ponomarev
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: ponomarev@ipc.rssi.ru
				                					                																			                												                								Moscow, 119071 Russia						
D. A. Uchkina
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: ponomarev@ipc.rssi.ru
				                					                																			                												                								Moscow, 119071 Russia						
A. Yu. Sholokhova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: ponomarev@ipc.rssi.ru
				                					                																			                												                								Moscow, 119071 Russia						
A. A. Mitrofanov
Faculty of Chemistry, Moscow State University
							Author for correspondence.
							Email: ponomarev@ipc.rssi.ru
				                					                																			                												                								Moscow, 119991 Russia						
References
- Vlasov S.I., Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2021. V. 55(5). P. 393.
- Ponomarev A.V., Vlasov S.I., Kholodkova E.M. // High Energy Chem. 2019. V. 53(4). P. 314.
- Belova N.V., Oberhammer H., Trang N.H., Girichev G.V. // J. Org. Chem. 2014. V. 79. P. 5412.
- Morell C., Grand A., Toro-Labbé A. // J. Phys. Chem. A. 2005. V. 109. P. 205
- Fukui K. // Science. 1982. V. 218(4574). P. 747.
- Smirnova A., Mitrofanov A., Matveev P., Baygildiev T., Petrov V. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 14992.
- Matveev P.I., Mitrofanov A.A., Petrov V.G., Zhokhov S.S., Smirnova A.A., Ustynyuk Y.A., Kalmykova S.N. // RSC Adv. 2017. V. 7. P. 55441.
- Curran H.J. // Int. J. Chem. Kinet. 2006. V. 38. P. 250.
- Huynh L.K., Violi A. // J. Org. Chem. 2008. V. 73. P. 94.
- Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. Wiley. N.Y. 1994.
- Hush N., Livett M., Peel J., Willett G. // Aust. J. Chem. 1987. V. 40. P. 599.
- Messaadia L., El Dib G., Ferhati A., Chakir A. // Chem. Phys. Lett. 2015. V. 626. P. 73.
- Ji Y., Qin D., Zheng J., Shi Q., Wang J., Lin Q., Chen J., Gao Y., Li G., An T. // Sci. Total Environ. 2020. V. 720. P. 137610.
- Vlasov S.I., Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2018. V. 52(4). P. 312.
- Ponomarev A.V., Ratner A.M., Pikaev A.K. // High Energy Chem. 1995. V. 29(2). P. 91.
- Howard D.L., Kjaergaard H.G., Huang J., Meuwly M. // J. Phys. Chem. A. 2015. V. 119. P. 7980.
- Antonov I., Voronova K., Chen M.-W., Sztáray B., Hemberger P., Bodi A., Osborn D.L., Sheps L. // J. Phys. Chem. A. 2019. V. 123. P. 5472.
- Guo J.-J., Hu A., Zuo Z. // Tetrahedron Lett. 2018. V. 59. P. 2103.
- Dibble T.S., Chai J. // Advances in Atmospheric Chemistry. World Scientific, 2017. P. 185.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					










