Amorphous SICX:H and SICXNY:H films obtained from hexamethyldisilane vapor in inductively coupled RF discharge plasma
- Autores: Chagin M.N.1, Ermakova E.N.1, Shayapov V.R.1, Sulyaeva V.S.1, Maksimovskii E.A.1, Yushina I.V.1, Kosinova M.L.1
- 
							Afiliações: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Edição: Volume 58, Nº 6 (2024)
- Páginas: 500-507
- Seção: PLASMA CHEMISTRY
- URL: https://rjeid.com/0023-1193/article/view/681218
- DOI: https://doi.org/10.31857/S0023119324060112
- EDN: https://elibrary.ru/THFVPG
- ID: 681218
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Amorphous films of hydrogenated silicon carbide SiCx:H and carbonitride SiCxNy:H have been synthesized in an RF inductively coupled plasma reactor using hexamethyldisilane vapor and additional argon and/or nitrogen gases. The deposition process was carried out at temperatures of 50–400°C and plasma powers of 100–400 W. The dependences of the growth rate, chemical composition and structure of films, light transmittance, refractive index, and optical band gap on synthesis conditions have been obtained. An in situ study of the gas phase composition was performed using optical emission spectroscopy.
Texto integral
 
												
	                        Sobre autores
M. Chagin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: marina@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
E. Ermakova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: marina@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
V. Shayapov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: marina@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
V. Sulyaeva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: marina@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
E. Maksimovskii
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: marina@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
I. Yushina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: marina@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
M. Kosinova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: marina@niic.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
Bibliografia
- Ermakova E., Kosinova M. // J. Organomet. Chem. 2022. V. 958. P. 122183.
- Gilman A.B., Zinoviev A.V., Kuznetsov A.A. // High Energy Chemistry. 2022. V. 56. № 6. P. 470.
- Fainer N.I., Nemkova A.A. // High Energy Chemistry. 2015. V. 49. № 4. P. 308
- Wróbel A.M., Wickramanayaka S., Nakanishi Y., et al. // Diam. Relat. Mater. 1997. V. 6. P. 1081
- Wickramanayaka S., Hatanaka Y., Nakanishi Y., Wróbel A.M. // J. Electrochem. Soc. 1994. V. 141. № 10. P. 2910.
- Neileth S. Figueroa, J.L. Nachez, F.L. et al. // J. Ceram. Soc. Japan. 2009. V. 117. P. 558.
- Cho S.H., Choi D.J. // J. Ceram. Soc. Japan. 2009. V. 117. P. 558.
- Jun S. Lee, Su B. et al. // Curr. Appl. Phys. 2015. V. 15. P. 1342.
- Choi Y.S, Lee J.S., Jin S.B., Han J.G. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 315501.
- Shim C., Jung D. // Jpn. J. Appl. Phys. 2004. V. 43. P. 940.
- Klumpp A., Schaber U., Offereins H.L. et al. // Sens. Actuators A Phys., 1994. V. 41. P. 310.
- Ito H., Kumakura M., Suzuki T. et al. // Jpn. J. Appl. Phys. 2016. V. 55. P. 06HC01.
- Orlikovskiy A.A., Rudenko K.V., Averkin S.N. // High Energy Chemistry. 2006. V. 40. № 3. P. 220.
- Pearse R.W.B., Gaydon A.G. The Identification of Molecular Spectra. Hoboken, NY, USA: J. Wiley& Sons, 1963.
- Dieke G.H. The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke. Ed. Crosswhite H.M., New York, NY, USA: Wiley-InterScience. 1972.
- NIST Atomic Spectra Database; NIST Standard Reference. Database 78, Version 5.9. Available online: https://physics.nist.gov/asd
- Rumyantsev Yu.M., Chagin M.N., Shayapov V.R. et al. // Glass Phys. Chem. 2018. V. 44. №. 3. P. 174.
- Chagin M.N., Sulyaeva V.S., Shayapov V.R. et al. // Coatings. 2022. V. 12. P. 80
- Tolstoy V.P., Chernyshova I.V., Skryshevsky V.A. Handbook of Infrared Spectroscopy of Ultrathin Films. Hoboken, NJ, USA: John Wiley & Sons, Inc.: 2003. 739 p.
- Bellamy L.J. The Infrared Spectra of Complex Molecules. London, United Kingdom: Springer, 1975. 433 p.
- Launer P.J.; Arkles B. Infrared analysis of organosilicon compounds: Spectra-structure correlations. In Silicon Compounds: Silanes & Silicones. Morrisville, PA, USA: Gelest, Inc. 2013.
- Stuart B.H. Infrared spectroscopy: fundamentals and applications. John Wiley & Sons Ltd, 2004. 224 p.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





