Influence of Ionization and Spin Transitions on Electron Delocalization in the Molecules of Transition Metal Sandwich Complexes
- Authors: Ketkov S.Y.1, Rychagova E.A.1
- 
							Affiliations: 
							- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 57, No 1 (2023)
- Pages: 80-88
- Section: GENERAL QUESTIONS
- URL: https://rjeid.com/0023-1193/article/view/661534
- DOI: https://doi.org/10.31857/S0023119323010072
- EDN: https://elibrary.ru/DDWGZK
- ID: 661534
Cite item
Abstract
A quantum-chemical study of the structures of symmetric 3d metal sandwich complexes with benzene and cyclopentadienyl ligands has been carried out within the framework of the electron density of delocalized bonds (EDDB) model. Neutral and ionized molecules in various spin states were considered. It is shown that successive population of the d-electron shell by varying the metal atom in a series of similar complexes, as a rule, leads to a decrease in the degree of electron density delocalization. The detachment of an electron from neutral molecules also reduces the number of delocalized electrons in the sandwich system, but
the contribution of the metal atom to delocalization increases in most cases. Singlet-triplet transitions in metallocenes and bis-benzene complexes decrease the electron density of delocalized bonds, but to a lesser extent than in the free and C6H6 ligands.
About the authors
S. Yu. Ketkov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
														Email: sketkov@iomc.ras.ru
				                					                																			                												                								Nizhny Novgorod, 603950 Russia						
E. A. Rychagova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: sketkov@iomc.ras.ru
				                					                																			                												                								Nizhny Novgorod, 603950 Russia						
References
- Wilkinson G., Rosenblum M., Whiting M.C., Woodward R.B. // J. Am. Chem. Soc. 1952. V. 74. P. 2125.
- Fischer E.O., Pfab W. // Z. Naturforsch. 1952. V. 7. P. 377.
- Comprehensive Organometallic Chemistry II: a Review of the Literature 1982–1994 / Eds. Abel E.W., Stone F.G.A., Wilkinson G. Oxford, N.Y.: Pergamon, 1995. Vols. 5–9.
- Laszlo P., Hoffmann R. // Angew. Chem. Int. Ed. 2000. V. 39. P. 123.
- Bochman M. // Organometallics and Catalysis: An Introduction. Oxford: Oxford University Press. 2015, 432 p.
- Plachida P., Evans D.R., Solanki R. / In: Nanoelectronic Device Applications Handbook. Eds. Morris J. E., Iniewski K. Boca Raton: CRC Press, 2013, pp. 409–420.
- Ihara T. / In: Advances in Bioorganometallic Chemistry. Eds. Hirao T., Moriuchi T. Elsevier, Amsterdam, 2019. Chapter 14. pp. 277–303.
- Scottwell S.O., Barnsley J.E., McAdam C.J., Gordon K.C., Crowley J.D. // Chem. Commun. 2017. V. 53. P. 7628.
- Woodward R.B., Rosenblum M., Whiting M.C. // J. Am. Chem. Soc. 1952. V. 74. P. 3458.
- Clack D.W., Warren K.D. // Struct. Bond. 1980. V. 39. P. 1.
- Elschenbroich C. Organometallics. 3rd edn. Wiley-VCH, Weinheim, 2006. Chapter 15, pp. 528–549.
- Aromaticity: Modern Computational Methods and Applications / Ed. Fernandez I. Elsevier Science, 2021. 499 p.
- Bean D.E., Fowler P.W., Morris M.J. // J. Organomet. Chem. 2011. V. 696. P. 2093.
- Grocka I., Latos-Grazynski L., Stepien M. // Angew. Chem. Int. Ed. 2013. V. 52. P. 1044.
- Valiev R.R., Kurten T., Valiulina L.I., Ketkov S.Y., Cherepanov V.N., Dimitrova M., Sundholm D. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 1666.
- Szczepanik D.W., Zak E.J., Dyduch K., Mrozek J. // Chem. Phys. Lett. 2014. V. 593. P. 154.
- Szczepanik D.W., Andrzejak M., Dominikowska J., Pawelek B., Krygowski T.M., Szatylowicz H., Sola M. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 28970.
- Green J.C. // Struct. Bond. 2019. V. 181. P. 81.
- Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. V. 88. P. 899.
- Frisch M.J. et al. GAUSSIAN 09 (Revision D.01), Gaussian Inc., Wallingford CT. 2010.
- Ketkov S.Y., Selzle H.L. // Angew. Chem. Int. Ed. 2012. V. 51. P. 11527.
- Ketkov S. // Dalton Trans. 2020. V. 49. P. 569.
- Ketkov S.Y., Rychagova E.A., Zhigulin G.Y., Tzeng S.Y., Tzeng W.B. // High Energ. Chem. 2020. V. 54. P. 414.
- Ketkov S.Y., Tzeng S.Y., Rychagova E.A., Markin G.V., Makarov S.G., Tzeng W.B. // Dalton Trans. 2021. V. 50. P. 10729.
- Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215.
- Sun Y., Chen H. // J. Chem. Theory Comput. 2013. V. 9. P. 4735.
- Szczepanik D.W. RunEDDB. Available at: http://www.eddb.pl
- Rasmussen S.C. // ChemTexts. 2015. V. 1. № 1. Article 10.
- Layfield R.A. // Chem. Soc. Rev. 2008. V. 37. P. 1098.
- Baird N.C. // J. Am. Chem. Soc. 1972. V. 94. P. 4941.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





