Ionization of Helium Atoms by Triply Charged Metal Atoms during Laser Ablation of Metals in Superfluid Helium
- Authors: Boltnev R.E.1,2, Karabulin A.V.1,3, Krushinskaya I.N.2, Pelmenev A.A.2, Matyushenko V.I.2
- 
							Affiliations: 
							- Joint Institute for High Temperatures, Russian Academy of Sciences
- Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
 
- Issue: Vol 57, No 2 (2023)
- Pages: 161-166
- Section: ЛАЗЕРОХИМИЯ
- URL: https://rjeid.com/0023-1193/article/view/661523
- DOI: https://doi.org/10.31857/S0023119323020067
- EDN: https://elibrary.ru/NGSRUI
- ID: 661523
Cite item
Abstract
The applicability of laser ablation of metal targets for obtaining triply charged ions of metal atoms, including low-melting metals, has been experimentally demonstrated. By analyzing the luminescence spectra of a plasma plume during laser ablation of a metal target immersed in superfluid helium, the main channel for the formation of helium ions in plasma at a laser beam power density below the breakdown threshold of the helium medium has been determined. It has been shown that the ionization of helium atoms occurs in two steps, the formation of the HeM3+ ionic complex and the dissociation of the complex via its interaction with a metal atom.
Keywords
About the authors
R. E. Boltnev
Joint Institute for High Temperatures, Russian Academy of Sciences; Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: boltnev@gmail.com
				                					                																			                												                								Moscow, 125412 Russia; Chernogolovka, Moscow oblast, 142432 Russia						
A. V. Karabulin
Joint Institute for High Temperatures, Russian Academy of Sciences; Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
														Email: irkrush@gmail.com
				                					                																			                												                								Moscow, 125412 Russia; Chernogolovka, Moscow oblast, 142432 Russia						
I. N. Krushinskaya
Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: irkrush@gmail.com
				                					                																			                												                								Chernogolovka, Moscow oblast, 142432 Russia						
A. A. Pelmenev
Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: irkrush@gmail.com
				                					                																			                												                								Chernogolovka, Moscow oblast, 142432 Russia						
V. I. Matyushenko
Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
							Author for correspondence.
							Email: irkrush@gmail.com
				                					                																			                												                								Chernogolovka, Moscow oblast, 142432 Russia						
References
- NIST Atomic Spectra Database, NIST Standard Reference Database 78, https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
- Schmidt J., Gavioso R., May E., Moldover M. // Phys. Rev. Lett. 2007. V. 98. № 25. P. 254504.
- Hughes J.M., von Nagy-Felsobuki E.I. // Eur. Phys. J. D. 1999. V. 6. № 2. P. 185.
- Grandinetti F. // Int. J. Mass Spectrom. 2004. V. 237. № 2–3. P. 243.
- Wilson D.J.D., Marsden C.J., von Nagy-Felsobuki E.I. // Chem. Phys. 2002. V. 284. № 3. P. 555–563.
- Wilson D.J.D., Marsden C.J., von Nagy-Felsobuki E.I. // Phys Chem Chem Phys. 2003. V. 5. № 2. P. 252–258.
- Wesendrup R., Pernpointner M., Schwerdtfeger P. // Phys. Rev. A. 1999. V. 60. № 5. P. R3347–R3349.
- Müller E.W., Tsong T.T. // Prog. Surf. Sci. 1974. V. 4. P. 1–139.
- Tsong T.T., Kinkus T.J. // Phys. Scr. 1983. V. T4. P. 201–203.
- Karabulin A.V., Matyushenko V.I., Khodos I.I. // High Energy Chem. 2022. V. 56. № 6. P. 493–498.
- Sirisky S., Yang Y., Wei W., Maris H.J. // J. Low Temp. Phys. 2017. V. 189. № 1–2. P. 53–59.
- Buelna X., Popov E., Eloranta J. // J. Low Temp. Phys. 2017. V. 186. № 3–4. P. 197–207.
- Benderskii A.V., Zadoyan R., Schwentner N., Apkarian V.A. // J. Chem. Phys. 1999. V. 110. № 3. P. 1542–1557.
- Atrazhev V.M., Shakhatov V.A., Boltnev R.E., Bonifaci N., Aitken F., Eloranta J. // High Temp. 2017. V. 55. № 2. P. 165–173.
- Cabalín L.M., Laserna J.J. // Spectrochim. Acta Part B At. Spectrosc. 1998. V. 53. № 5. P. 723–730.
- Torrisi L., Gammino S., Andò L., Làska L. // J. Appl. Phys. 2002. V. 91. № 7. P. 4685–4692.
- Wu D., Mao X., Chan G.C.-Y., Russo R.E., Zorba V., Ding H. // J. Anal. At. Spectrom. 2020. V. 35. № 4. P. 767–775.
- Wu D., Chan G.C.-Y., Mao X., Li Y., Russo R.E., Ding H., Zorba V. // Plasma Sci. Technol. 2021. V. 23. № 9. P. 095505.
- Saxena A.K., Singh R.K., Joshi H.C. // Plasma Sources Sci. Technol. 2021. V. 30. № 3. P. 035016.
- Wright T.G., Lee E.P.F. // Chem. Phys. Lett. 2004. V. 383. № 1–2. P. 1–5.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



