Chain Oxidation of Hydroquinone by Water Activated by Pulsed Hot-Plasma Radiation
- Autores: Piskarev I.M.1
- 
							Afiliações: 
							- Skobeltsyn Research Institute of Nuclear Physics, Moscow State University
 
- Edição: Volume 57, Nº 6 (2023)
- Páginas: 472-477
- Seção: PLASMA CHEMISTRY
- URL: https://rjeid.com/0023-1193/article/view/661466
- DOI: https://doi.org/10.31857/S002311932306013X
- EDN: https://elibrary.ru/SFMXOM
- ID: 661466
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The interaction of hydroquinone with water activated by hot-plasma pulsed radiation has been studied. In the reactions of hydroquinone with products accumulated in water during irradiation (nitrous and peroxynitrous acids), hydroquinone undergoes chain oxidation to benzoquinone. The mechanism of chain oxidation is analyzed. The decomposition of hydroquinone by corona discharge cold plasma (OH• radicals) was studied. Benzoquinone is not produced by the action of corona discharge; hydroquinone immediately decomposes into smaller molecules. The hydroquinone oxidation process considered can be used to create hydrogen elements based on the hydroquinone ↔ benzoquinone couple.
Palavras-chave
Sobre autores
I. Piskarev
Skobeltsyn Research Institute of Nuclear Physics, Moscow State University
							Autor responsável pela correspondência
							Email: i.m.piskarev@gmail.com
				                					                																			                												                								Moscow, 119234 Russia						
Bibliografia
- Piskarev I.M., Ivanova I.P. // Plasma Source Sci. Technol. 2019. V. 28. 065008 (10 p).
- Ivanova I.P., Piskarev I.M. // IEEE Transactions on Plasma Science. 2022. V. 50(11). 4667.
- Иванова И.П., Пискарев И.М. // Химия высоких энергий. 2022. Т. 56. № 5. С. 339.
- Пискарев И.М. // Химия высоких энергий. 2019 Т. 53 № 1. С. 71.
- Abraham I., Joshi R., Pardasani P., Pardasani R. // J. Braz. Chem. Soc. 2011. V. 22. № 3 . P. 385.
- Nawar S., Huskinson B., Aziz M. // Mater. Res. Soc. Symp. Proc. 2012. P. 1491.
- Wilke T., Schneider M., Kleinerman K. // Open J. of Physical Chemistry. 2013. V. 3. P. 97.
- Fonagy O., Szabo-Bardos E., Horvath O. // Journal of Photochemistry and Photobiology. A. Chemistry. 2021. V. 407. 113057.
- Cheng C.-Y., Chan Y.-T., Tzon Y.-M. et al. // J. of Spectroscopy. 2016. V. 2016. Article ID 7958351. https://doi.org/10.1155/2016/7958351
- Maurya M., Sikarwar S. // J. of Molecular Catalysis. A. Chemistry. 2007. V. 263. P. 175.
- Derikvand F., Bigi F., Maggi R. et al. // J. of Catalysis. 2010. V. 271. P. 99.
- Gambarotti C., Melone L., Punta C., Shisodia S.U. // Current Organic Chemistry. 2013. V. 17. P. 1108.
- Ivanova I.P., Piskarev I.M., Trofimova S.V. // American Journal of Physical Chemistry. 2013. V. 2. № 2. P. 44.
- Лобачев В.Л., Рудаков Е.С. // Успехи химии. 2006. Т. 75. № 5. С. 422.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



