Identification of pathogenic bacteria using the spectra of native DNA molecules
- Autores: Ikhlov B.L1
- 
							Afiliações: 
							- Perm State National Research University
 
- Edição: Volume 68, Nº 3 (2023)
- Páginas: 489-495
- Seção: Articles
- URL: https://rjeid.com/0006-3029/article/view/673481
- DOI: https://doi.org/10.31857/S0006302923030092
- EDN: https://elibrary.ru/FRFWLB
- ID: 673481
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The purpose of detecting low-frequency (relative to infrared and ultraviolet) resonance absorption of an electromagnetic field in the centimeter wavelength range using DNA molecules at a frequency corresponding to the natural frequency of torsional vibrations of the native DNA helix is to find a relationship between the length of DNA (its spectrum) and the type of a bacterium. Instead of DNA solution, cultures of different bacteria that contained DNA were used and the resonance frequencies of torsional vibrations of the helices in DNA molecules were calculated for them. The cultures were placed in test tubes or in a cuvette and were subjected to microwave irradiation. Theoretical analysis was carried out with respect to the DNA reaction to external centimeter radiation and the resonant DNA frequencies of three types of bacteria such as E. coli M17, M. avium and Mycobacterium tuberculosis were determined. Peak absorption of the ultrahigh-frequency electromagnetic field by bacterial cultures was detected at frequencies close to the calculated natural frequencies of torsional vibrations of DNA helices of the said types of bacteria: 10.271 GHz, 10.317 GHz and 10.356 GHz, respectively.
			                Palavras-chave
Sobre autores
B. Ikhlov
Perm State National Research University
														Email: boris.ichlov@gmail.com
				                					                																			                												                								Perm, Russia						
Bibliografia
- В. В. Аншелевич, А. В. Вологодский, А. В. Лукашин и М. Д. Франк-Каменецкий, Журн. эксперим. и теорет. физики, 66, 2163 (1974).
- O. A. Tiphlova and T. J. Karu, Photochem. Photobiol., 48 (1), 467 (1988).
- Г. В. Козьмин и В. И. Егорова, Биомед. технологии и радиоэлектроника, № 3, 61 (2006).
- B. M. Fischer, M. Walther, and P. Jepsen, Physics in Medicine and Biology, 47, 3807 (2002). doi: 10.1088/0031-9155/47/21/319.
- T. Globus, I. Sizov, and B. Gelmont, Adv. Biosci. Biotechnol., 4, 493 (2013) doi: 10.4236/abb.2013.43A065
- V. Garaj-Vrhovac, D. Horvat, and Z. Koren, Mutat. Res. Lett., 243 (2), 87 (1990). doi: 10.1016/0165-7992(90)90028-I
- P. Shaw, et al., Sci. Reports, 11 (1), 1 (2021). doi: 10.1038/s41598-021-93274-w
- В. Бинги, Принципы электромагнитной биофизики (Физматлит, М., 2011).
- Б. Л. Ихлов, Ф. В. Мельниченко и А. Ю. Ощепков, Вестн. новых мед. технологий, 24 (2), 141 (2017).
- Б. Л. Ихлов, А. А. Шурыгин и В. А. Дробкова, Туберкулез и болезни легких, 97 (1), 25 (2019). doi: 10.21292/2075-1230-2019-97-1-25-27
- A. A. Traves and J. M. T. Thompson, In The Mechanics of DNA, Ed. by J.M.T. Thompson (Theme Issue of Phil. Trans. Roy. Soc. A, 362 (1820), 1265) (2004).
- T. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon, Progr. Biophys. Mol. Biol., 74, 115 (2000).
- Б. Л. Ихлов, Вестн. новых мед. технологий, 25 (2), 121 (2018).
- А. Н. Ковалева, И. Л. Маневич, А. А. Мусиенко и А. В. Савин, Высокомолекуляр. соединения. Сер. А, 51 (7), 1174 (2009).
- C Gabriel, E. H. Grant, R. Tata, et al., Nature, 328 (6126), 145 (1987). doi: 10.1038/328145a0
- I. J. Bigio, T. R. Gosnell, P. Mukherjee, and J. D. Safer. Biopolymers, 33 (1), 147 (1993). doi: 10.1002/bip.360330114
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
