Povtornaya identifikatsiya lyudey v sistemakh videonablyudeniya s ispol'zovaniem glubokogo obucheniya: analiz sushchestvuyushchikh metodov
- Authors: Chen K.1, Ignat'eva S.A2, Bogush R.P2, Ablameyko S.V3
-
Affiliations:
- Zhejiang Shuren University
- Euphrosyne Polotskaya State University of Polotsk
- Belarusian State University
- Issue: No 5 (2023)
- Pages: 61-112
- Section: Intellectual control systems, data analysis
- URL: https://rjeid.com/0005-2310/article/view/646771
- DOI: https://doi.org/10.31857/S0005231023050057
- EDN: https://elibrary.ru/AHHWFO
- ID: 646771
Cite item
Abstract
This paper is devoted to a multifaceted analysis of person re-identification (ReID) in video surveillance systems and modern solution methods using deep learning. The general principles and application of convolutional neural networks for this problem are considered. A classification of person ReID systems is proposed. The existing datasets for training deep neural architectures are studied and approaches to increasing the number of images in databases are described. Approaches to forming human image features are considered. The backbone models of convolutional neural network architectures used for person ReID are analyzed and their modifications as well as training methods are presented. The effectiveness of person ReID is examined on different datasets. Finally, the effectiveness of the existing approaches is estimated in different metrics and the corresponding results are given
About the authors
Kh. Chen
Zhejiang Shuren University
Email: eric.hf.chen@hotman.com
Hangzhou, Zhejiang, China
S. A Ignat'eva
Euphrosyne Polotskaya State University of Polotsk
Email: s.ignatieva@psu.by
Polotsk, Belarus
R. P Bogush
Euphrosyne Polotskaya State University of Polotsk
Email: r.bogush@psu.by
Polotsk, Belarus
S. V Ablameyko
Belarusian State University
Author for correspondence.
Email: ablameyko@bsu.by
Minsk, Belarus
References
- Ye S., Bohush R.P., Chen H. Person Tracking and Re-identification for Multicamera Indoor Video Surveillance Systems // Pattern Recognit. Image Anal. 2020. No. 30. P. 827-837. https://doi.org/10.1134/S1054661820040136
- Ye M., Shen J., Lin G., Xiang T., Shao L., Hoi S.C. Deep Learning for Person Re-identification: A Survey and Outlook // IEEE Transactions On Pattern Analysis And Machine Intelligence. 2021. https://doi.org/10.1109/TPAMI.2021.3054775
- Zang X., Li G., Gao W. Multi-direction and Multi-scale Pyramid in Transformer for Video-based Pedestrian Retrieval // ArXiv, abs/2202.06014. 2022. https://doi.org/10.1109/TII.2022.3151766
- Mihaescu R., Chindea M., Paleologu C., Carata S., Ghenescu M. Person Re-Identification across Data Distributions Based on General Purpose DNN Object Detector // Algorithms. 2020. No. 13. 343. https://doi.org/10.3390/a13120343
- Liu H., Qin L., Cheng Z., Huang Q. Set-based classification for person re-identification utilizing mutual-information // 2013 IEEE International Conference on Image Processing. 2013. P. 3078-3082. https://doi.org/10.1109/ICIP.2013.6738634
- Gu X., Chang H., Ma B., Bai S., Shan S., Chen X. Clothes-Changing Person Re-identification with RGB Modality // ArXiv, abs/2204.06890, 2022. https://doi.org/10.48550/arXiv.2204.06890
- Huang Y., Wu Q., Zhong Y., Zhang Z. Clothing Status Awareness for Long-Term Person Re-Idenification // 2021 IEEE/CVF International Conference on Computer Vision, 2021. P. 11895-11904. https://doi.org/10.1109/ICCV48922.2021.01168
- Hao X., Zhao S., Ye M., Shen J. Cross-Modality Person Re-Identification via Modality Confusion and Center Aggregation // 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021. P. 16383-16392. https://doi.org/10.1109/ICCV48922.2021.0160
- Zhang T., Xie L., Wei L., Zhuang Z., Zhang Y., Li, B. Tian, Q. UnrealPerson: An Adaptive Pipeline towards Costless Person Re-identification // 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. P. 11501-11510. https://doi.org/10.1109/CVPR46437.2021.01134
- Zhao F., Liao S., Xie G., Zhao J., Zhang K., Shao L. Unsupervised Domain Adaptation with Noise Resistible Mutual-Training for Person Re-identification // ECCV 2020. Lecture Notes in Computer Science, 2020. V. 12356. P. 526-544. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_31
- Luo C., Song C., Zhang Z. Generalizing Person Re-Identification by Camera-Aware Invariance Learning and Cross-Domain Mixup // ECCV 2020. Lecture Notes in Computer Science, 2020. V. 12356. P. 224-241. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_14
- Jin X., Lan C., Zeng W., Chen Z., Zhang L. Style Normalization and Restitution for Generalizable Person Re-Identification // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. P. 3140-3149. https://doi.org/10.1109/cvpr42600.2020.00321
- Song J., Yang Y., Song Y., Xiang T., Hospedales T.M. Generalizable Person Re-Identification by Domain-Invariant Mapping Network // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. P. 719-728. https://doi.org/10.1109/CVPR.2019.00081
- Ihnatsyeva S., Bohush R., Ablameyko S. Joint Dataset for CNN-based Person Re-identification // Pattern Recognition and Information Processing (PRIP'2021) Proceedings of the 15th International Conference, 21-24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. Minsk, 2021. P. 33-37.
- Liao S., Mo Z., Hu Y., Li S. Open-set Person Re-identification // ArXiv, abs/1408.0872, 2014. https://doi.org/10.48550/arXiv.1408.0872
- Li W., Zhao R., Wang X. Human Reidentification with Transferred Metric Learning // Proceedings of the 11th Asian conference on Computer Vision (ACCV). 2012. https://doi.org/10.1007/978-3-642-37331-2_3
- Li W., Wang X. Locally Aligned Feature Transforms across Views // 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013. P. 3594-3601. https://doi.org/10.1109/CVPR.2013.461
- Li W., Zhao R., Xiao T., Wang X. DeepReID: Deep Filter Pairing Neural Network for Person Re-identification // 2014 IEEE Conference on Computer Vision and Pattern Recognition, P. 152-159. https://doi.org/10.1109/CVPR.2014.27
- Wei L., Zhang S., Gao W., Tian Q. Person Transfer GAN to Bridge Domain Gap for Person Re-identification // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. P. 79-88. https://doi.org/10.1109/CVPR.2018.00016
- Ristani E., Solera F., Zou R.S., Cucchiara R., Tomasi C. Performance Measures and a Data Set for Multi-target, Multi-camera Tracking // ArXiv, abs/1609.01775, 2016. https://doi.org/10.1007/978-3-319-48881-3_2
- Exposing.ai. Duke MTMC. URL: https://exposing.ai/duke_mtmc
- Zheng L., Zhang H., Sun S., Chandraker M., Yang Y., Tian Q. Person Re-identification in the Wild // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. P. 3346-3355. https://doi.org/10.1109/CVPR.2017.357
- Xiao T., Li S., Wang B., Lin L., Wang, X. Joint Detection and Identification Feature Learning for Person Search // IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. P. 3376-3385. https://doi.org/10.1109/CVPR.2017.360
- Zheng L., Bie Z., Sun Y., Wang J., Su C., Wang S., Tian Q. MARS: A Video Benchmark for Large-Scale Person Re-Identification // ECCV 2016. Lecture Notes in Computer Science, V. 9910. P. 863-884. Springer, Cham. 2016. https://doi.org/10.1007/978-3-319-46466-4_52
- Song G., Leng B., Liu Y., Hetang C., Cai S. Region-based Quality Estimation Network for Large-scale Person Re-identification // AAAI. ArXiv, abs/1711.08766. 2018. https://doi.org/10.48550/arXiv.1711.08766
- Zheng L., Shen L., Tian L., Wang S., Wang J., Tian, Q. Scalable Person Re-identification: A Benchmark // IEEE International Conference on Computer Vision (ICCV), 2015. P. 1116-1124. https://doi.org/10.1109/ICCV.2015.133
- Gray D., Brennan S., Tao H. Evaluating Appearance Models for Recognition, Reacquisition, and Tracking // IEEE Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. 2007.
- Hirzer M., Beleznai C., Roth P.M., Bischof H. Person Re-identification by Descriptive and Discriminative Classification // SCIA. Lecture Notes in Computer Science. 2011. V. 6688. P. 91-102, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21227-7_9
- Zheng W., Gong S., Xiang T. UnrealPerson: An Adaptive Associating Groups of People // BMVC. 2009. https://doi.org/10.5244/C.23.23
- Karanam S., Gou M., Wu Z., Rates-Borras A., Camps O.I., Radke R.J. A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets // IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. No. 41. P. 523-536. https://doi.org/10.1109/TPAMI.2018.2807450
- Ihnatsyeva S., Bohush R. PolReID, 2021. URL: https://github.com/SvetlanaIgn/PolReID
- Li S., Xiao T., Li H., Zhou B., Yue D., Wang X. Person Search with Natural Language Description // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 5187-5196. https://doi.org/10.1109/CVPR.2017.551
- Ding Z., Ding C., Shao Z., Tao, D. Semantically Self-Aligned Network for Text-to-Image Part-aware Person Re-identification // ArXiv, abs/2107.12666, 2021
- Li X., Zheng W., Wang X., Xiang T., Gong S. Multi-Scale Learning for Low-Resolution Person Re-Identification // 2015 IEEE International Conference on Computer Vision (ICCV). 2015. P. 3765-3773. https://doi.org/10.1109/ICCV.2015.429
- Jing X., Zhu X., Wu F., Hu R., You X., Wang Y., Feng H. Yang J. Super-Resolution Person Re-Identification With Semi-Coupled Low-Rank Discriminant Dictionary Learning // IEEE Transactions on Image Processing, 2015. No. 26. P. 1363-1378. https://doi.org/10.1109/TIP.2017.2651364
- Wu A., Zheng W., Yu H., Gong S., Lai J. RGB-Infrared Cross-Modality Person Re-identification // IEEE International Conference on Computer Vision (ICCV). 2017. P. 5390-5399. https://doi.org/10.1109/ICCV.2017.575
- Nguyen T.D., Hong H.G., Kim K., Park K.R. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras // Sensors (Basel, Switzerland). No. 17. 2017. https://doi.org/10.3390/s17030605
- Pang L., Wang Y., Song Y., Huang T., Tian, Y. Cross-Domain Adversarial Feature Learning for Sketch Re-identification // Proceedings of the 26th ACM international conference on Multimedia. 2018. https://doi.org/10.1145/3240508.3240606
- Xiao T., Li S., Wang B., Lin L., Wang X. End-to-end deep learning for person search // ArXiv, abs/1604.01850, 2016.
- Layne R., Hospedales T.M., Gong S. Investigating Open-World Person Re-identification Using a Drone // ECCV Workshops. 2014. https://doi.org/10.1007/978-3-319-16199-0_16
- Fu D., Chen D., Bao J., Yang H., Yuan L., Zhang L., Li H., Chen D. Unsupervised Pre-training for Person Re-identification // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. P. 14745-14754. https://doi.org/10.1109/CVPR46437.2021.01451
- Fabbri M., Bras'o G., Maugeri G., Cetintas O., Gasparini R., Osep A., Calderara S., Leal-Taixe L., Cucchiara R. MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking // 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021. P. 10829-10839. https://doi.org/10.1109/iccv48922.2021.01067
- Makehuman community. Makehuman, 2020. URL: http://www.makehumancommunity.org
- Epic Games Incorporated. Unreal engine, 2020. URL: https://www.unrealengine.com
- Barbosa I.B., Cristani M., Caputo B., Rognhaugen A., Theoharis T. Looking beyond appearances: Synthetic training data for deep CNNs in re-identification // ArXiv, abs/1701.03153., 2018. https://doi.org/10.1016/j.cviu.2017.12.002
- Bak S., Carr P., Lalonde J. Domain Adaptation through Synthesis for Unsupervised Person Re-identification // ECCV. ArXiv, abs/1804.10094, 2018. https://doi.org/10.1007/978-3-030-01261-8_12
- Sun X., Zheng L. Dissecting Person Re-Identification From the Viewpoint of View-point // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 608-617. https://doi.org/10.1109/CVPR.2019.00070
- Wang Y., Liao S., Shao L. Surpassing Real-World Source Training Data: Random 3D Characters for Generalizable Person Re-Identification // Proceedings of the 28th ACM International Conference on Multimedia. 2020. https://doi.org/10.1145/3394171.3413815
- Wang Y., Liang X., Liao S. Cloning Outfits from Real-World Images to 3D Characters for Generalizable Person Re-Identification // ArXiv, abs/2204.02611. 2022. https://doi.org/10.48550/arXiv.2204.02611
- Unity Technologies. 2020. Unity3D: Cross-platform game engine. URL: https://unity.com
- Zhong Z., Zheng L., Kang G., Li S., Yang Y. Random Erasing Data Augmentation // AAAI. 2020. https://doi.org/10.1609/AAAI.V34I07.7000
- Ni X., Rahtu E. FlipReID: Closing the Gap Between Training and Inference in Person Re-Identification // 2021 9th European Workshop on Visual Information Processing (EUVIP). 2021. P. 1-6. https://doi.org/10.1109/EUVIP50544.2021.9484010
- Li W., Xu F., Zhao J., Zheng R., Zou C., Wang M., Cheng Y. HBReID: Harder Batch for Re-identification // ArXiv, abs/2112.04761, 2021. https://doi.org/10.48550/arXiv.2112.04761
- Huang Y., Zha Z., Fu X., Hong R., Li L. Real-World Person Re-Identification via Degradation Invariance Learning // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 14072-14082. https://doi.org/10.1109/cvpr42600.2020.01409
- Jiang Y., Chen W., Sun X., Shi X., Wang F., Li H. Exploring the Quality of GAN Generated Images for Person Re-Identification // Proceedings of the 29th ACM International Conference on Multimedia. 2021. https://doi.org/10.1145/3474085.3475547
- Wu C., Ge W., Wu A., Chang X. Camera-Conditioned Stable Feature Generation for Isolated Camera Supervised Person Re-Identification // ArXiv, abs/2203.15210, 2022. https://doi.org/10.48550/arXiv.2203.15210
- Wang G., Lai J., Huang P., Xie X. Spatial-Temporal Person Re-identification // ArXiv, abs/1812.03282. 2019. https://doi.org/10.1609/aaai.v33i01.33018933
- Yu Z., Jin Z., Wei L., Guo J., Huang J., Cai D., He X., Hua X. Progressive Transfer Learning for Person Re-identification // IJCAI. 2019. https://doi.org/10.24963/ijcai.2019/586
- Sun Y., Zheng L., Yang Y., Tian Q., Wang S. Beyond Part Models: Person Retrieval with Refined Part Pooling // ECCV. 2018. https://doi.org/10.1007/978-3-030-01225-0_30
- Bayoumi R.M., Hemayed E.E., Ragab M.E., Fayek M.B. Person Re-Identification via Pyramid Multipart Features and Multi-Attention Framework // Big Data and Cognitive Computing. 2022. https://doi.org/10.3390/bdcc6010020
- Wang G., Yang S., Liu H., Wang Z., Yang Y., Wang S., Yu G., Zhou E., Sun J. High-Order Information Matters: Learning Relation and Topology for Occluded Person Re-Identification // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 6448-6457. https://doi.org/10.1109/CVPR42600.2020.00648
- Sun K., Xiao B., Liu D., Wang J. Deep High-Resolution Representation Learning for Human Pose Estimation // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 5686-5696. https://doi.org/10.1109/CVPR.2019.00584
- Yang J., Zhang J., Yu F., Jiang X., Zhang M., Sun X., Chen Y., Zheng W.S. Learning to Know Where to See: A Visibility-Aware Approach for Occluded Person Re-identification // Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. P. 11885-11894.
- Fang H., Xie S., Tai Y., Lu C. RMPE: Regional Multi-person Pose Estimation // IEEE International Conference on Computer Vision (ICCV). 2017. P. 2353-2362. https://doi.org/10.1109/ICCV.2017.256
- Chen X., Liu X., Liu W., Zhang X., Zhang Y., Mei T. Explainable Person Re-Identification with Attribute-guided Metric Distillation // IEEE/CVF International Conference on Computer Vision (ICCV). 2022. P. 11793-11802. https://doi.org/10.1109/ICCV48922.2021.01160
- Dai Y., Sun Y., Liu J., Tong Z., Yang Y., Duan L. Bridging the Source-to-target Gap for Cross-domain Person Re-Identification with Intermediate Domains // ArXiv, abs/2203.01682. 2022. https://doi.org/10.48550/arXiv.2203.01682
- Zhang H., Cisse M., Dauphin Y., Lopez-Paz D. mixup: Beyond Empirical Risk Minimization // ArXiv, abs/1710.09412, 2018. https://doi.org/10.48550/arXiv.1710.09412
- Huang X., Belongie S.J. Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization // 2017 IEEE International Conference on Computer Vision (ICCV). 2017. P. 1510-1519. https://doi.org/10.1109/ICCV.2017.167
- Avola D., Cascio M., Cinque L., Fagioli A., Petrioli C. Person Re-Identification Through Wi-Fi Extracted Radio Biometric Signatures // IEEE Transactions on Information Forensics and Security. V. 17. 2022. P. 1145-1158. https://doi.org/10.1109/TIFS.2022.3158058
- Qi L., Shen J., Liu J., Shi Y., Geng X. Label Distribution Learning for Generalizable Multi-source Person Re-identification // ArXiv, abs/2204.05903. 2022. https://doi.org/10.48550/arXiv.2204.05903
- Yang X., Zhou Z., Wang Q., Wang Z., Li X. Li H. Cross-domain unsupervised pedestrian re-identification based on multi-view decomposition // Multimed Tools Appl. 2022. https://doi.org/10.1007/s11042-021-11797-w
- Elharrouss O., Almaadeed N., Al-Maadeed S.A., Bouridane A. Gait recognition for person re-identification // J. Supercomput. 2021 No. 77. P. 3653-3672. https://doi.org/10.1007/s11227-020-03409-5
- Chao H., He Y., Zhang J., Feng J. GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition // ArXiv, abs/1811.06186, 2019. https://doi.org/10.1609/aaai.v33i01.33018126
- Jiang X., Qiao Y., Yan J., Li Q., Zheng W., Chen D. SSN3D: Self-Separated Network to Align Parts for 3D Convolution in Video Person Re-Identification // Proceedings of the AAAI Conference on Arti cial Intelligence. 2021. No. 35(2). P. 1691-1699. https://ojs.aaai.org/index.php/AAAI/article/view/16262
- Yang F., Wang X., Zhu X., Liang B., Li W. Relation-based global-partial feature learning network for video-based person re-identification // Neurocomputing. 2022. V. 488. P. 424-435. https://doi.org/10.1016/j.neucom.2022.03.032
- Lu Z., Zhang G., Huang G., Yu Z., Pun C., Ling K. Video person re-identification using key frame screening with index and feature reorganization based on inter-frame relation // Int. J. Mach. Learn. Cyber. 2022. https://doi.org/10.1007/s13042-022-01560-4
- Yadav A., Vishwakarma D.K. Person Re-Identification using Deep Learning Networks: A Systematic Review // ArXiv, abs/2012.13318. 2020. https://doi.org/10.48550/arXiv.2012.13318
- Zhang Z., Lan C., Zeng W., Jin X., Chen Z. Relation-Aware Global Attention for Person Re-Identification // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. P. 3183-3192. https://doi.org/10.1109/CVPR42600.2020.00325
- Pathak P., Eshratifar A.E., Gormish M.J. Video Person Re-ID: Fantastic Techniques and Where to Find Them // AAAI. 2020. https://doi.org/10.1609/aaai.v34i10.7219
- Liu X., Zhang P., Yu C., Lu H., Yang X. Watching You: Global-guided Reciprocal Learning for Video-based Person Re-identification // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. P. 13329-13338. https://doi.org/10.1109/CVPR46437.2021.01313
- Gao S., Wang J., Lu H., Liu Z. Pose-Guided Visible Part Matching for Occluded Person ReID // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 11741-11749. https://doi.org/10.1109/cvpr42600.2020.01176
- Zhang S., Yin Z., Wu X., Wang K., Zhou Q., Kang B. FPB: Feature Pyramid Branch for Person Re-Identification // ArXiv, abs/2108.01901. 2021. https://doi.org/10.48550/arXiv.2108.01901
- Yang F., Li W., Liang. B., Han S., Zhu X. Multi-stage attention network for video-based person re-identification // IET Comput. Vis. 2022. P. 1-11. https://doi.org/10.1049/cvi2.1210
- Wu G., Zhu X., Gong Sh. Learning hybrid ranking representation for person re-identification // Pattern Recognition. V. 121. 2022. https://doi.org/10.1016/j.patcog.2021.108239
- Zhong Z., Zheng L., Cao D., Li S. Re-ranking Person Re-identification with k-Re-ciprocal Encoding // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 3652-3661. https://doi.org/10.1109/CVPR.2017.389
- Bohush R.P., Ablameyko S.V., Adamovskiy E.R. Image Similarity Estimation Based on Ratio and Distance Calculation between Features // Pattern Recognit. Image Anal. 2020. No. 30. P. 147-159. https://doi.org/10.1134/S1054661820020030
- He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 770-778. https://doi.org/10.1109/cvpr.2016.90
- Choi S., Kim T., Jeong M., Park H., Kim C. Meta Batch-Instance Normalization for Generalizable Person Re-Identification // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. P. 3424-3434. https://doi.org/10.1109/CVPR46437.2021.00343
- Huang G., Liu Z., Weinberger K.Q. Densely Connected Convolutional Networks // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 2261-2269. https://doi.org/10.1109/CVPR.2017.243
- Chen P., Dai P., Liu J., Zheng F., Tian Q., Ji R. Dual Distribution Alignment Network for Generalizable Person Re-Identification // AAAI. ArXiv, abs/2007.13249, 2021. https://doi.org/10.48550/arXiv.2007.13249
- Zhao C., Chen K., Wei Z., Chen Y., Miao D., Wang W. Multilevel triplet deep learning model for person re-identification // Pattern Recognit. Lett. 2019. No. 117. P. 161-168. https://doi.org/10.1016/j.patrec.2018.04.029
- Yao Y., Jiang X., Fujita H., Fang Z. A sparse graph wavelet convolution neural network for video-based person re-identification // Pattern Recognition. 2022. V. 129. https://doi.org/10.1016/j.patcog.2022.108708
- Lu P., Lu K., Wang W., Zhang J., Chen P., Wang B. Real-Time Pedestrian Detection in Monitoring Scene Based on Head Model // Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science. V. 11644. P. 558-568, Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_53
- Lee S., Kang Q., Madireddy S., Balaprakash P., Agrawal A., Choudhary A.N., Archibald R., Liao W. Improving Scalability of Parallel CNN Training by Adjusting Mini-Batch Size at Run-Time // 2019 IEEE International Conference on Big Data (Big Data). 2019. P. 830-839. https://doi.org/10.1109/BigData47090.2019.9006550
- Lewkowycz A. How to decay your learning rate // ArXiv, abs/2103.12682, 2021. https://doi.org/10.48550/arXiv.2103.12682
- Lewkowycz A., Bahri Y., Dyer E., Sohl-Dickstein J., Gur-Ari G. The large learning rate phase of deep learning: the catapult mechanism // ArXiv, abs/2003.02218, 2020. https://doi.org/10.48550/arXiv.2003.02218
- Ulyanov D., Vedaldi A., Lempitsky V.S. Instance Normalization: The Missing Ingredient for Fast Stylization // ArXiv, abs/1607.08022, 2016. https://doi.org/10.48550/arXiv.1607.08022
- Chen H., Ihnatsyeva S., Bohush R., Ablameyko S. Choice of activation function in convolution neural network in video surveillance systems // Programming and computer software. 2022. No. 5. P. 312-321. https://doi.org/10.1134/S0361768822050036
- Nair, Vinod, Geo rey E. Hinton. Recti ed linear units improve restricted Boltzmann machines // ICML / 2010. P. 807-814.
- Maas Andrew L. Recti er non linearities improve neural network acoustic models // ICML. 2013. V. 30.
- Xu B., Wang N., Chen T., Li M. Empirical Evaluation of Recti ed Activations in Convolutional Network // ArXiv, abs/1505.00853, 2015. https://doi.org/10.48550/arXiv.1505.00853
- Clevert D., Unterthiner T., Hochreiter S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) // arXiv: abs/1511.07289v5, 2016. https://doi.org/10.48550/arXiv.1511.07289
- Klambauer G., Unterthiner T., Mayr A., Hochreiter S. Self-Normalizing Neural Networks // ArXiv, abs/1706.02515, 2017. https://doi.org/10.48550/arXiv.1706.02515
- Hendrycks D., Gimpel K. Bridging Nonlinearities and Stochastic Regularizers with Gaussian Error Linear Units. // ArXiv, abs/1606.08415, 2016. https://doi.org/10.48550/arXiv.1606.08415
- Ramachandran P., Zoph B., Le Q.V. Swish: a Self-Gated Activation Function // arXiv: abs/1710.05941v2, 2017. https://doi.org/10.48550/arXiv.1710.05941
- Misra D. Mish: A Self Regularized Non-Monotonic Neural Activation Function // ArXiv, abs/1908.08681, 2019. https://doi.org/10.48550/arXiv.1908.08681
- Lavi B., Ullah I., Fatan M., Rocha A. Survey on Reliable Deep Learning-Based Person Re-Identification Models: Are We There Yet? // ArXiv, abs/2005.00355, 2020. https://doi.org/10.48550/arXiv.2005.00355
- Rao H., Miao C. SimMC: Simple Masked Contrastive Learning of Skeleton Representations for Unsupervised Person Re-Identification // ArXiv, abs/ 2204.09826v1, 2022. https://doi.org/10.48550/arXiv.2204.09826
- Zheng Y., Zhou Y., Zhao J., Jian M., Yao R., Liu B., Chen Y. A siamese pedestrian alignment network for person re-identification // Multim. Tools Appl. 2021. No. 80. P. 33951-33970. https://doi.org/10.1007/s11042-021-11302-3
- Zheng M., Karanam S., Wu Z., Radke R.J. Re-Identification With Consistent Attentive Siamese Networks // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 5728-5737. https://doi.org/10.1109/CVPR.2019.00588
- Hermans A., Beyer L., Leibe B. In Defense of the Triplet Loss for Person Re-Identification // ArXiv, abs/1703.07737, 2017. https://doi.org/10.48550/arXiv.1703.07737
- Organisciak D., Riachy C., Aslam N., Shum H. Triplet Loss with Channel Attention for Person Re-identification // J. WSCG. 2019. No. 27. https://doi.org/10.24132/JWSCG.2019.27.2.9
- Zhai Y., Guo X., Lu Y., Li H. In Defense of the Classi cation Loss for Person Re-Identification // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2019. P. 1526-1535. https://doi.org/10.1109/CVPRW.2019.00194
- Alex D., Sami Z., Banerjee S., Panda S. Cluster Loss for Person Re-Identification // Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing. 2018. https://doi.org/10.1145/3293353.3293396
- Bai Z., Wang Z., Wang J., Hu D., Ding E. Unsupervised Multi-Source Domain Adaptation for Person Re-Identification // 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. P. 12909-12918. https://doi.org/10.1109/CVPR46437.2021.01272
- Chen H., Lagadec B., Bremond F. Unsupervised Lifelong Person Re-identification via Contrastive Rehearsal // ArXiv, abs/2203.06468, 2022. https://doi.org/10.48550/arXiv.2203.06468
- Zhang X., Li D., Wang Z., Wang J., Ding E., Shi J., Zhang Z., Wang J. Implicit Sample Extension for Unsupervised Person Re-Identification // ArXiv, abs/2204.06892, 2022. https://doi.org/10.48550/arXiv.2204.06892
- Zhu K., Guo H., Yan T., Zhu Y., Wang J., Tang M. Part-Aware Self-Supervised Pre-Training for Person Re-Identi cation // ArXiv, abs/2203.03931, 2022. https://doi.org/10.48550/arXiv.2203.03931
- Fu D., Chen D., Yang H., Bao J., Yuan L., Zhang L., Li H., Wen F., Chen D. Large-Scale Pre-training for Person Re-identification with Noisy Labels // ArXiv, abs/2203.16533, 2022. https://doi.org/10.48550/arXiv.2203.16533
- Cho Y.H., Kim W.J., Hong S., Yoon S. Part-based Pseudo Label Refinement for Unsupervised Person Re-identification // ArXiv, abs/2203.14675, 2022. https://doi.org/10.48550/arXiv.2203.14675
- Chen M., Wang Z., Zheng F. Benchmarks for Corruption Invariant Person Re-identification // ArXiv, abs/2111.00880. 2021. https://doi.org/10.48550/arXiv.2111.00880
- Dataset and Code. URL: https://www.pkuvmc.com/dataset.html
Supplementary files
