Высокотемпературная теплоемкость и термодинамические функции германата LiNaGe4O9
- Авторы: Денисова Л.Т.1, Голубева Е.О.1, Каргин Ю.Ф.2, Васильев Г.В.1, Денисов В.М.1
- 
							Учреждения: 
							- Сибирский федеральный университет
- Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук
 
- Выпуск: Том 59, № 7 (2023)
- Страницы: 809-813
- Раздел: Статьи
- URL: https://rjeid.com/0002-337X/article/view/668222
- DOI: https://doi.org/10.31857/S0002337X23070023
- EDN: https://elibrary.ru/PUMKFN
- ID: 668222
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Твердофазным синтезом из стехиометрических смесей исходных Li2CO3, Na2CO3 и GeO2 последовательным обжигом на воздухе в интервале температур 773–1073 K получен тетрагерманат лития-натрия LiNaGe4O9. С использованием рентгеновской дифракции уточнены параметры его элементарной ячейки (a = 4.68007(3), b = 9.3220(8), c = 15.900(2) Å, V = 694.113 Å, Z = 4, пр. гр. Pcca). Высокотемпературная теплоемкость измерена методом дифференциальной сканирующей калориметрии в интервале температур 320–1050 K. По экспериментальным значениям температурной зависимости теплоемкости Cp = f(T) рассчитаны основные термодинамические функции LiNaGe4O9.
Ключевые слова
Об авторах
Л. Т. Денисова
Сибирский федеральный университет
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                								Россия, 660041, Красноярск, пр. Свободный, 79						
Е. О. Голубева
Сибирский федеральный университет
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                								Россия, 660041, Красноярск, пр. Свободный, 79						
Ю. Ф. Каргин
Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр., 49						
Г. В. Васильев
Сибирский федеральный университет
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                								Россия, 66004, Красноярск, пр. Свободный, 79						
В. М. Денисов
Сибирский федеральный университет
							Автор, ответственный за переписку.
							Email: ldenisova@sfu-kras.ru
				                					                																			                												                								Россия, 660041, Красноярск, пр. Свободный, 79						
Список литературы
- Ilyushin G.D., Dem’yanets L.N. Crystal Chemistry of Germanates: Characteristic Structural Features of Li,Ge-germanates // Crystallogr. Rep. 2000. V. 45. P. 626–632.
- Matveeva R.G., lyukhin V.V.I., Belov N.V. Crystalline Structure of Mixed Alkali Tetragermanate // Dokl. Akad. Nauk SSSR. 1973.V. 213. № 3. P. 584–587.
- Волнянский М.Д., Кудзин А.Ю. Сегнетоэлектрические свойства монокристаллов LiNaGe4O9 // Физика твердого тела. 1990. Т. 32. № 10. С. 3160–3163.
- Волнянский М.Д., Трубицын М.П., Бибикова О.А. Влияние нестехиометрии состава на проводимость кристаллов LiNaGe4O9 // Физика твердого тела. 2014. Т. 56. № 6. С. 1060–1063.
- Bibikova O.A., Volnianskii M.D., Trubitsyn M.P. Electric Conductivity of LiNaGe4O9:Cu Crystals // Biсник ХНУ. Сер. Фiзика. 2015. Вип. 23. С. 117–119.
- Омельченко К.С., Хмеленко О.В., Панченко Т.В., Волнянский М.Д. Фотолюминесценция кристаллов LiNaGe4O9, активированных марганцем // Физика твердого тела. 2014. Т. 56. № 4. С. 722–726.
- Li P., Tan L., Wang L., Zheng J. et al. Synthesis, Structure, and Performance of Efficient Red Phosphor Li-NaGe4O9:Mn4+ and Its Application in Warm WLEDs // J. Am. Ceram. Soc. 2016. V. 99. № 6. P. 2029–2034. https://doi.org/10.1111/jacc.14168
- Morad I., Liu X., Qiu J. Crystallization-Induced Valence State Change of Mn2+ → Mn4+ in LiNaGe4O9 Glass-Ceramics // J. Am. Ceram. Soc. 2020. V. 103. P. 3051–3059. https://doi.org/10.1111/jacc.17006
- Jasik A., Berkowski M., Kaczmarek S.M. et al. Growth, Optical and EPR Properties of Li1.72Na0.28Ge4O9 Single Crystals Pure and Slightly Doped with Cr // Cent. Eur. J. Phys. 2012. V. 10. № 2. P. 506–513. https://doi.org/10.2478/s11534-011-0114-4
- Morikawa K., Atake T., Wada M., Yamaguchi T. Phase Transitions and the Heat Capacity Anomalies in Ferroelectric Ki2Ge7O15 and LiNaGe4O9 // J. Phys. Soc. Jpn. 1998. V. 67. № 6. P. 1994–1998.
- Cach R., Cebula I., Volnyanskii M.D. Specific Heat Anomalies in Ferroelectrics LiNaGe4O9 and Li1.1Na0.9Ge4O9 // Phys. Status Solidi, A. 2004. V. 241. № 5. P. 998–1004. https://doi.org/10.1002/pssb.200301983
- Диаграммы состояния систем тугоплавких оксидов: Справочник. Вып. 5. Двойные системы. Ч. I / Под ред. Галахова Ф.Я. Л.: Наука, 1985. 284 с.
- Baur F., Jüstel T. Dependence of the Optical Properties of Mn4+ Activated A2Ge4O9 (A = K, Rb) on Temperature and Chemical Environment // J. Lumin. 2016. V. 177. P. 354–360. https://doi.org/10.1016/j.jlumin.2016.04.046
- Shornicov S.I. Thermodynamic Properties of the Na2O-GeO2 Melts // Experim. Geochem. 2014. V. 2. № 1. P. 51–53.
- Bruker AXS TOPAS V4: General Profile and Structure Analysis Softwere for Powder Diffraction Data. – User’s Manual. Bruker AXS. Karlsruhe. Germany. 2008.
- Денисов В.М., Денисова Л.Т., Иртюго Л.А., Биронт В.С. Теплофизические свойства монокристаллов Bi4Ge3O12 // Физика твердого тела. 2010. Т. 52. № 7. С. 1274–1277.
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Высокотемпературная теплоемкость и термодинамические свойства Tb2Sn2O7 // Неорган. материалы. 2017. Т. 53. № 1. С. 71–73. https://doi.org/10.7868/S0002337X17010043
- Maier C.G., Kelley K.K. An Equation for the Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. № 8. P. 3243–3246. https://doi.org/10.1021/ja01347a029
- Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- Richet P., Fiquet G. High-Temperature Heat Capacity and Premelting of Minerals in the System MgO–CaO–Al2O3–SiO2 // J. Geophys. Res. 1991. V. 96. № B1. P. 445–456.
- Чудненко К.В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск: Гео, 2010. 287 с.
- Leitner J., Chuchvalec P., Sedmidubský D. et al. Estimation of Heat Capacities of Solid Mixed Oxides // Thermochim. Acta. 2003. V. 395. P. 27–46.
- Leitner J., VoňKa P., Sedmidubský D., Svoboda P. Application of Neumann-Kopp Rule for Estimation of Heat Capacity of Mixed Oxides // Thermochim. Acta. 2010. V. 497. P. 7–13. https://doi.org/10.1016/j.tca.2009.08.002
- Кумок В.Н. Проблема согласования методов оценки термодинамических характеристик // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108–123.
- Spencer P.J. Estimation of Thermodynamic Data for Metallurgical Applications // Thermochim. Acta. 1998. V. 314. P. 1–21.
- Штенберг М.В., Бычинский В.А., Королева О.Н. и др. Расчет энтальпии образования, стандартной энтропии и стандартной теплоемкости щелочных и щелочноземельных германатов // Журн. неорган. химии. 2017. Т. 62. № 11. С. 1470–1475. https://doi.org/10.7868/S0044457X17110071
- Glasser L., Jenkins H.D.B. Ambient Isobaric Heat Capacities, Cp,m, for Ionic Solids and Liquids: an Application of Volume-Based Thermodynamics (VBT) // Inorg. Chem. 2011. V. 50. P. 8565–8569. https://doi.org/10.1021/ic201093p
- Glasser L., Jenkins H.D.B. Single-Ion Heat Capacities, Cp(298)ion, of Solids: with a Novel Route to Heat-Capacity Estimation of Complex Anions // Inorg. Chem. 2012. V. 51. P. 6369–6366.https://doi.org/10.1021/ic300591fi
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 


