Structural Features of Coatings Produced by Cladding with STIM-2/30 SHS Electrodes and T-590 Commercially Available Electrodes
- Autores: Zhidovich A.O.1, Averichev O.A.2, Ivanov A.S.2, Karpov S.V.3
- 
							Afiliações: 
							- Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- Tambov State Technical University
 
- Edição: Volume 59, Nº 10 (2023)
- Páginas: 1192-1198
- Seção: Articles
- URL: https://rjeid.com/0002-337X/article/view/668112
- DOI: https://doi.org/10.31857/S0002337X23100147
- EDN: https://elibrary.ru/CCLMZW
- ID: 668112
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
T-590 commercially available electrodes for wear-resistant claddings and STIM-2/30 electrodes prepared by self-propagating high-temperature synthesis (SHS) extrusion and containing reinforcing titanium carbide particles have been used to produce protective layers on the surface of steel by electric arc cladding. We have determined the phase composition and structure of the clad coatings. The results demonstrate that the microstructure of the coatings produced by cladding with the use of T-590 electrodes is formed by a carbide eutectic. The reinforcing TiC phase in the SHS electrodes has been shown to pass into the clad layer and be uniformly distributed across the entire clad layer, which is accompanied by the formation of an intermediate diffusion layer on the coating–substrate fusion interface. The hardness and microhardness of the clad coatings are a factor of 2–4 higher than those of the steel substrate. Cladding with the use of T-590 electrodes ensures higher hardness of the clad layers, but an increase in the percentage of ferrite in their structure can lead to a decrease in their wear resistance. The coatings produced by cladding with the use of SHS electrodes have a favorable structure capable of ensuring high abrasive wear resistance.
Palavras-chave
Sobre autores
A. Zhidovich
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
														Email: chij@ism.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka, 142432						
O. Averichev
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
														Email: a10012012@ism.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow oblast, Russia						
A. Ivanov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
														Email: a10012012@ism.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow oblast, Russia						
S. Karpov
Tambov State Technical University
							Autor responsável pela correspondência
							Email: a10012012@ism.ac.ru
				                					                																			                												                								392000, Tambov, Russia						
Bibliografia
- Tulaganova L., Yunushuzhaev S., Juraeva G. Improving the Wear Resistance and Durability of Cultivator Tools // J. Phys. Conf. Ser. 2022. V. 2373. P. 022026. https://doi.org/10.1088/1742-6596/2373/2/022026
- Сацик С.П. Влияние свойств абразивных частиц на износостойкость металлов // Наука без границ. 2019. Т. 32. № 4. С. 54–58.
- Добрин Д.А., Афанасьев А.В., Митусов С.С., Пикулева И.М. Современные технологии упрочнения рабочих органов почвообрабатывающих машин // Инновационные технологии, оборудование и материальные заготовки в машиностроении: сб. тр. Междун. науч.-технической конф. (Москва, 24–26 мая 2022 года). М.: МашТех, 2022. С. 293–295.
- Jankauskas V., Katinas E., Pusvaškis M. A Study of the Durability of Hardened Plough Point // J. Frict. Wear. 2020. V. 41. P. 78–84. https://doi.org/10.3103/S1068366620010171
- Begori V., Reddy C., Raghupathi. Tribological Characteristics of Stellite Hard faced Layer on Mild Steel // IOP Conf. Ser.: Mater. Sci. Eng. C. 2022. V. 1248. P. 012039. https://doi.org/10.1088/1757-899X/1248/1/012039
- Учкин П.Г. Исследование покрытий рабочих органов глубокорыхлителей, восстановленных плазменной наплавкой // Изв. ОГАУ. 2021. Т. 89. № 3. С. 126–131.
- Томарев Г.И., Кязымов Ф.А., Валитов М.З., Персиянов С.В. Износостойкий наплавочный материал: Пат. № 2644718 РФ. Б. И. № 5. 9 с.
- Столин А.М., Бажин П.М. Получение изделий многофункционального назначения из композитных и керамических материалов в режиме горения и высокотемпературного деформирования (СВС-экструзия) // ТОХТ. 2014. Т. 48. № 6. С. 603–615. https://doi.org/10.7868/S0040357114060116
- Болоцкая А.В., Михеев М.В. Получение методом СВС-экструзии компактных керамических электродных материалов на основе системы Ti‒B‒Fe, модифицированных наноразмерными частицами AlN // Новые огнеупоры. 2020. № 6. С. 51–55. https://doi.org/10.17073/1683-4518-2020-6-51-55
- Столин A.M., Бажин П.М., Михеев М.В., Аверичев О.А., Сагидоллаев А.С., Кылышбаев К.Т. Нанесение защитных покрытий электродуговой наплавкой СВС-электродами // Сварочное производство. 2014. № 8. С. 52–56.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








