MODAL LOGICS OF ALMOST SURE VALIDITIES AND ZERO-ONE LAWS IN HORN CLASSES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we develop a method to study Horn classes of Kripke frames from a probabilistic perspective. We consider the uniform distribution on the set of all

作者简介

V. Sliusarev

Moscow Institute of Physics and Technology

Email: vnvdvc@gmail.com
Moscow, Russia

参考

  1. Глебский Ю. В., Коган Д. И., Легонький М. И., Таланов В. А. Область и степень реализуемости формул ограниченного исчисления предикатов. Кибернетика, 5:142–154, 1969.
  2. Fagin Ronald Probabilities on finite models. Journal of Symbolic Logic, 41(1):50–58, 1976.
  3. Halpern Joseph Y., Kapron Bruce Zero-one laws for modal logic. Annals of Pure and Applied Logic, 69(2):157–193, 1994.
  4. Le Bars Jean-Marie. The 0-1 law fails for frame satisfiability of propositional modal logic. Proceedings — Symposium on Logic in Computer Science, pages 225–234, 02 2002.
  5. Verbrugge Rineke. Zero-one laws for provability logic: Axiomatizing validity in almost all models and almost all frames. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Proceedings Symposium on Logic in Computer Science. IEEE Xplore, June 2021.
  6. Halpern Joseph Y., Kapron Bruce. Erratum to “zeroone laws for modal logic”. Annals of Pure and Applied Logic APAL, 121:281–283, 06 2003.
  7. Le Bars Jean-Marie. The 0-1 law fails for frame satisfiability of propositional modal logic. Proceedings Symposium on Logic in Computer Science, pages 225 – 234, 02 2002.
  8. Le Bars Jean-Marie. Counterexamples of the 0-1 law for fragments of existential second-order logic: An overview. Bulletin of Symbolic Logic, 6, 03 2000.
  9. Popova Svetlana, Zhukovskii Maksim. Existential monadic second order logic of undirected graphs: a disproof of the Le Bars conjecture. Annals of Pure and Applied Logic, 170:505–514, 2019.
  10. Gaifman Haim. Concerning measures in first order calculi. Israel Journal of Mathematics, 2:1–18, 1964.
  11. Goranko Valentin, Kapron Bruce. The modal logic of the countable random frame. Archive for Mathematical Logic, 42, 10 2001.
  12. Goranko Valentin. The modal logic of almost sure frame validities in the finite. In AiML, 2020.
  13. Ebbinghaus Heinz-Dieter, Flum Jörg. Finite Model Theory. Perspectives in Mathematical Logic. Springer Berlin Heidelberg, 1999.
  14. Blackburn Patrick, de Rijke Maarten, Venema Yde. Modal logic. Studia Logica, 76(1):142–148, 2001.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024