ONE-DIMENSIONAL FINITE-GAP SCHRÖDINGER OPERATORS AS A LIMIT OF COMMUTING DIFFERENCE OPERATORS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we show that the one–dimensional finite–gap Schrödinger operator can be obtained by passing to the limit from a second–order difference operator that commutes with some odd–order difference operator; the coefficients of these difference operators are functions defined on the line and depend on a small parameter. Moreover, the spectral curve of the difference operators does not depend on the small parameter and coincides with the spectral curve of the Schrödinger operator.

作者简介

G. Mauleshova

Novosibirsk State University; Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: mauleshova@math.nsc.ru
Russian Federation, Novosibirsk; Russian Federation, Novosibirsk

A. Mironov

Novosibirsk State University; Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: mironov@math.nsc.ru
Russian Federation, Novosibirsk; Russian Federation, Novosibirsk

参考

  1. Маулешова Г.С., Миронов А.Е. // ДАН. 2018. Т. 478. В. 4. С. 392–394.
  2. Новиков С.П. // Функц. анализ и его прил. 1974. Т. 8. В. 3. С. 54–66.
  3. Итс А.Р., Матвеев В.Б. //ТМФ. 1975. Т. 23. В. 1. С. 51–68.
  4. Кричевер И.М. // УМН. 1978. Т. 33. В. 4 (202). С. 215–216.
  5. Mumford D. // Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977). Kinokuniya. Tokyo. 1978. 115–153.
  6. Кричевер И.М., Новиков С.П. // УМН. 2003. Т. 58. В. 3 (351). С. 51–88.
  7. Маулешова Г.С., Миронов А.Е. // Тр. МИАН. 2020. Т. 310. С. 217–229.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Г.С. Маулешова, А.Е. Миронов, 2023