Инварианты однородных динамических систем седьмого порядка с диссипацией
- Авторы: Шамолин М.В.1
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 516, № 1 (2024)
- Страницы: 65-74
- Раздел: МАТЕМАТИКА
- URL: https://rjeid.com/2686-9543/article/view/647959
- DOI: https://doi.org/10.31857/S2686954324020105
- EDN: https://elibrary.ru/XIRKPA
- ID: 647959
Цитировать
Аннотация
Представлены новые случаи интегрируемых однородных по части переменных динамических систем седьмого порядка, в которых может быть выделена система на касательном расслоении к трехмерному многообразию. При этом силовое поле разделяется на внутреннее (консервативное) и внешнее, которое обладает диссипацией разного знака. Внешнее поле вводится с помощью некоторого унимодулярного преобразования и обобщает ранее рассмотренные поля. Приведены полные наборы как первых интегралов, так и инвариантных дифференциальных форм.
Об авторах
М. В. Шамолин
Московский государственный университет им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: shamolin@rambler.ru
Россия, Москва
Список литературы
- Poincaré H. Calcul des probabilités. Paris: Gauthier–Villars, 1912.
- Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе // Доклады АН СССР. 1953. Т. 93. № 5. С. 763–766.
- Козлов В.В. Тензорные инварианты и интегрирование дифференциальных уравнений // Успехи матем. наук. 2019. Т. 74. № 1(445). С. 117–148.
- Шамолин М.В. Об интегрируемости в трансцендентных функциях // Успехи матем. наук. 1998. Т. 53. № 3. С. 209–210.
- Шамолин М.В. Полный список первых интегралов динамических уравнений движения четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования // Доклады РАН. 2013. Т. 449. № 4. С. 416–419.
- Шамолин М.В. Инварианты однородных динамических систем пятого порядка с диссипацией // Доклады РАН. Математика, информатика, процессы управления. 2023. Т. 514. № 1. С. 98–106.
- Шамолин М.В. Инвариантные формы объема систем с тремя степенями свободы с переменной диссипацией // Доклады РАН. Математика, информатика, процессы управления. 2022. Т. 507. № 1. С. 86–92.
- Козлов В.В. Рациональные интегралы квазиоднородных динамических систем // Прикл. матем. и механ. 2015. Т. 79. № 3. С. 307–316.
- Клейн Ф. Неевклидова геометрия. Пер. с нем. Изд. 4, испр., обновл. М.: URSS, 2017.
- Вейль Г. Симметрия. М.: URSS, 2007.
- Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // Успехи матем. наук. 1983. Т. 38. № 1. С. 3–67.
- Трофимов В.В., Шамолин М.В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем // Фундам. и прикл. матем. 2010. Т. 16. № 4. С. 3–229.
- Шамолин М.В. Новые случаи полной интегрируемости в динамике динамически симметричного четырехмерного твердого тела в неконсервативном поле // Доклады РАН. 2009. Т. 425. № 3. С. 338–342.
- Шамолин М.В. Полный список первых интегралов в задаче о движении четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования // Доклады РАН. 2011. Т. 440. № 2. С. 187–190.
- Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.
- Polyanin A.D. & Zaitsev V.F. (2017). Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315117638
- Шабат Б.В. Введение в комплексный анализ. М.: Наука, 1987.
- Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005.
- Тамура И. Топология слоений. М.: Мир, 1979.
- Шамолин М.В. Динамические системы с переменной диссипацией: подходы, методы, приложения // Фундам. и прикл. матем. 2008. Т. 14. № 3. С. 3–237.
Дополнительные файлы
