Существование максимального среднего временного сбора в КПП-модели на сфере при постоянном и импульсном отборах
- Авторы: Винников Е.В.1,2, Давыдов А.А.1,2, Туницкий Д.В.3
- 
							Учреждения: 
							- Московский государственный университет им. М.В. Ломоносова
- НИТУ МИСИС
- Институт проблем управления им. В.А. Трапезникова РАН
 
- Выпуск: Том 514 (2023)
- Страницы: 59-64
- Раздел: МАТЕМАТИКА
- URL: https://rjeid.com/2686-9543/article/view/647899
- DOI: https://doi.org/10.31857/S2686954323600453
- EDN: https://elibrary.ru/DEDOKV
- ID: 647899
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
На двумерной сфере рассматривается распределенный возобновляемый ресурс любой природы, динамика которого описывается моделью типа Колмогорова–Петровского–Пискунова–Фишера, и эксплуатация этого ресурса, осуществляемая путем постоянного или периодического импульсного отбора плотности ресурса. Показано, что после выбора допустимой стратегии эксплуатации динамика ресурса стремится к предельной динамике, соответствующей этой стратегии, и что существуют допустимые стратегии, доставляющие максимум среднего временного сбора ресурса.
Об авторах
Е. В. Винников
Московский государственный университетим. М.В. Ломоносова; НИТУ МИСИС
							Автор, ответственный за переписку.
							Email: evinnikov@gmail.com
				                					                																			                												                								Россия, Москва; Россия, Москва						
А. А. Давыдов
Московский государственный университетим. М.В. Ломоносова; НИТУ МИСИС
							Автор, ответственный за переписку.
							Email: davydov@mi-ras.ru
				                					                																			                												                								Россия, Москва; Россия, Москва						
Д. В. Туницкий
Институт проблем управленияим. В.А. Трапезникова РАН
							Автор, ответственный за переписку.
							Email: dtunitsky@yahoo.com
				                					                																			                												                								Россия, Москва						
Список литературы
- Verhulst P.F. Notice sur la loi que la population poursuit dans son accroissement // Correspondance mathematique et physique. 1838. V. 10. P. 113–121.
- Арнольд В.И. Теория катастроф. М.: Наука, 1990. 128 с.
- Арнольд В.И. “Жесткие” и “мягкие” математические модели Электронное издание М.: МЦНМО, 2014. 32 с. ISBN 978-5-4439-2008-5.
- Колмогоров А.Н., Петровский И.Г., Пискунов Н.С. Исследование уравнения диффузии, соединенной с возрастанием вещества, и его применение к одной биологической проблеме // Бюллетень МГУ. Сер. А. Математика и Механика. 1937. Т. 1. № 6. С. 1–26.
- Fisher R.A. The Wave of Advance of Advantageous Genes//Annals of Eugenics, 1937. 7 (4), pp. 353–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
- Fourier J.B.J. Theorie Analytique de la Chaleur. Paris: F. Didot, 1822.
- Berestycki H., Francois H., Roques L. Analysis of the periodically fragmented environment model: I Species persistence// J. Math. Biol. 2005. V. 51. P. 75–113. https://doi.org/10.1007/s00285-004-0313-3
- Berestycki H., Francois H., Roques L. Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts. J. Math. Pures Appl. 2005. V. 84. P. 1101–1146. https://doi.org/10.1016/j.matpur.2004.10.006
- Pethame B. Parabolic equations in biology: Growth, reaction, movement and diffusion. Springer, 2015, Lecture Notes on Mathematical Modelling in the Life Sciences, 978-3-319-19499-8; 978-3-319-19500-1.
- Давыдов А.А. Существование оптимальных стационарных состояний эксплуатируемых популяций с диффузией//Избранные вопросы математики и механики, Сборник статей. К 70-летию со дня рождения академика Валерия Васильевича Козлова, Труды МИАН, 310, МИАН, М., 2020. P. 135–142; Proc. Steklov Inst. Math. 2020. V. 310. P. 124–130. https://doi.org/10.1134/S0081543820050090
- Davydov A.A. Optimal steady state of distributed population in periodic environment// AIP Conf. Proc. 2021. V. 2333. P. 120007. https://doi.org/10.1063/5.0041960
- Давыдов А.А., Мельник Д.А. Оптимальные состояния распределенных эксплуатируемых популяций с периодическим импульсным отбором// Тр. ИММ УрО РАН. 2021. Т. 27. № 2. С. 99–107. Optimal States of Distributed Exploited Populations with Periodic Impulse Harvesting // Proc. Steklov Inst. Math. 2021. V. 315 (Suppl. 1). P. S1–S8. https://doi.org/10.1134/S008154382106007910.1134/S0081543821060079 https://doi.org/10.21538/0134-4889-2021-27-2-99-107
- Davydov A.A., Vinnikov E.V. Optimal cyclic dynamic of distributed population under permanent and impulse harvesting// Dynamic Control and Optimization. DCO 2021. Springer Proceedings in Mathematics & Statistics. 2023. V. 407. P. 101–112. https://doi.org/10.1007/978-3-031-17558-9_5
- Туницкий Д.В. О разрешимости полулинейных эллиптических уравнений второго порядка на замкнутых многообразиях// Изв. РАН. Сер. матем. 2022. V. 86. № 5. P. 97–115. https://doi.org/10.4213/im9261
- Tunitsky D.V. On Initial Value Problem for Semilinear Second Order Parabolic Equations on Spheres// Proceedings of the 15th International Conference “Management of large-scale system development” (MLSD), 26–28 September, 2022, Moscow, Russia. IEEE Explore, 9 November 2022. P. 1–4. https://ieeexplore.ieee.org/document/9934193 https://doi.org/10.1109/MLSD55143.2022.9934193
- Nicolaescu L.I. Lectures on the Geometry of Manifolds. New Jersey: World Scientific, 2021.
- Tunitsky D.V. On Solvability of Second-Order Semilinear Elliptic Equations on Spheres / Proceedings of the 14th International Conference “Management of large-scale system development” (MLSD), 27–29 September, 2021, Moscow, Russia. IEEE Explore, 22 November 2021. P. 1–4. https://ieeexplore.ieee.org/document/9600203. ISBN 978-1-6654-1230-8 https://doi.org/10.1109/MLSD52249.2021.9600203
- Showalter R.E. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. AMS, Providence, RI, 1997.
- Lions J.L. Equations differentielles operationnelles et problemes aux limites, Springer-Verlag, Berlin, 1961.
- Пале Р. Семинар по теореме Атьи–Зингера об индексе. М.: Мир, 1970.
- Уэллс Р. Дифференциальное исчисление на комплексных многообразиях. М.: Мир, 1976.
- Koopman B.O. The theory of search. III. The optimum distribution of search effort // Operations Res. 1957. V. 5. № 5. P. 613–626.
- Жиков В.В. Математические проблемы теории поиска// Тр. Владимир. политех. ин-та. 1968. С. 263–270.
- Lieberman G.M. Second Order Parabolic Differential Equations. New Jersey: World Scientific, 2005.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

