Stability of solutions to the logistic equation with delay, diffusion and nonclassical boundary conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The work is devoted to the logistic equation with delay and diffusion with non-classical boundary conditions. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.

Texto integral

Acesso é fechado

Sobre autores

I. Kashchenko

P. G. Demidov Yaroslavl State University

Autor responsável pela correspondência
Email: iliyask@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Rússia, Yaroslavl

S. Kashchenko

P. G. Demidov Yaroslavl State University

Email: kasch@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Rússia, Yaroslavl

I. Maslenikov

P. G. Demidov Yaroslavl State University

Email: igor.maslenikov16@yandex.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Rússia, Yaroslavl

Bibliografia

  1. Wu J. Theory and applications of partial functional differential equations. New York: Springer-Verlag, 1996.
  2. Cushing J. M. Integrodifferential equations and delay models in population dynamics. Springer, 1977.
  3. Kuang Y. Delay differential equations: with applications in population dynamics. Academic Press, 1993.
  4. Murray J.D. Mathematical biology II: Spatial models and biomedical applications. New York : Springer, 2001. V. 3.
  5. Gourley S.A., So J.W-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics // Journal of Mathematical Sciences. 2004. V. 124. P. 5119–5153.
  6. Кащенко С.А., Логинов Д.О. Бифуркации при варьировании граничных условий в логистическом уравнении с запаздыванием и диффузией // Математические заметки. 2019. Т. 106. № 1. С. 138–143.
  7. Wright E.M. A non-linear difference-differential equation // J. fur die reine und angewandte Math. (Crelles Journal). 1955. V. 194. P. 66–87.
  8. Кащенко С.А. Динамика моделей на основе логистического уравнения с запаздыванием. М.: КРАСАНД, 2020.
  9. Кащенко С.А. , Толбей А.О. Бифуркации в логистическом уравнении с диффузией и запаздыванием в граничном условии // Матем. заметки. 2023. Т. 113. № 6. С. 940–944.
  10. Rudyi A.S. Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback // International J. of Thermophysics. 1993. V. 14. P. 159–172.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Images of curves (11). The stability region of the zero solution (3), (7) is highlighted in gray. Parameter values: T = 1, r = 1, d = 10−1 and a) h = 10−1, b) h = 10−2, c) h = 10−3, d) h = 0.

Baixar (56KB)
3. Fig. 2. The domain Ω for parameters T = 1, r = 1 and a) d = 0.1, b) d = 0.2, c) d = 0.5, d) d = 1.

Baixar (50KB)
4. Fig. 3. Graphs of the solution amplitude of solution (3), (6) for d = 0.1, T = 1, r = 1, x0 = 0.5, a) α = −26.5, b) α = −26.9, c) α = −27.

Baixar (52KB)
5. Fig. 4. Graphs of the dependence u(t,1) (left) and u(t*, x) (right) of the solution (3), (6) for d = 0.1, T = 1, r = 1, x0 = 0.55 α = −26.9.

Baixar (37KB)
6. Fig. 5. Graphs of the solution amplitude of solution (3), (6) for d = 0.1, T = 1, r = 1 , x0 = 0.55, a) α = −38, b) α = −100.5, c) α = −101, d) α = −118.

Baixar (75KB)
7. Fig. 6. Graphs of the dependence u(t,1) (left) and u(t*, x) (right) of the solution (3), (6) for d = 0.1, T = 1, r = 1 , x0 = 0.55, a) α = −100.5, b) α = −118.

Baixar (77KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024