OPERATOR GROUP GENERATED BY A ONE-DIMENSIONAL DIRAC SYSTEM
- 作者: Savchuk A.M.1, Sadovnichaya I.V.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 514, 编号 1 (2023)
- 页面: 79-81
- 栏目: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647921
- DOI: https://doi.org/10.31857/S2686954323600568
- EDN: https://elibrary.ru/CZLLLF
- ID: 647921
如何引用文章
详细
In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space \(\mathbb{H} = {{\left( {{{L}_{2}}[0,\pi ]} \right)}^{2}}\). The potential is assumed to be summable. It is proved that this group is well-defined in the space \(\mathbb{H}\) and in the Sobolev spaces \(\mathbb{H}_{U}^{\theta }\), \(\theta > 0\), with fractional index of smoothness \(\theta \) and under boundary conditions \(U\). Similar results are proved in the spaces \({{\left( {{{L}_{\mu }}[0,\pi ]} \right)}^{2}}\), \(\mu \in (1,\infty )\). In addition we obtain estimates for the growth of the group as \(t \to \infty \).
作者简介
A. Savchuk
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: savchuk@cosmos.msu.ru
Russian Federation, Moscow
I. Sadovnichaya
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: ivsad@yandex.ru
Russian Federation, Moscow
参考
- Шкаликов А.А. // УМН. 1979. Т. 34. № 5(209). С. 235–236.
- Savchuk A.M., Shkalikov A.A. // Math. Notes. 2014. V. 96 № 5. P. 777–810.
- Гомилко А.M. // Функц. анализ и его прил. 1999. Т. 33 № 4. С. 66–69.
- Albeverio S., Hryniv R., Mykytyuk Ya. // Russian J. Math. Phys. 2005. V. 12. № 4. P. 406–42.
- Баскаков А.Г., Дербушев А.В., Щербаков А.О. // Изв. РАН. Сер. матем. 2011. Т. 75. № 3. С. 3–28.
- Djakov P., Mityagin B. // Proc. Amer. Math. Soc. 2013. V. 141. № 4. P. 1361–1375.
- Beigl A., Eckhardt J., Kostenko A., Teschl G. // J. Math. Phys. 2015. V. 56, 012102.
- Djakov P., Mityagin B. // Russ. Math. Surv. 2020. V. 75. № 4. P. 587–626.
- Савчук А.М., Садовничая И.В. // Совр. мат-ка. Фунд. напр-я. 2020. Т. 66. № 3. С. 373–530.
- Лунев А.А., Маламуд М.М. // Зап. научн. сем. ПОМ-И. 2022. Т. 516. С. 69–120.
补充文件
