EXISTENCE AND RELAXATION OF SOLUTIONS FOR A DIFFERENTIAL INCLUSION WITH MAXIMAL MONOTONE OPERATORS AND PERTURBATIONS
- Autores: Tolstonogov A.A.1
- 
							Afiliações: 
							- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
 
- Edição: Volume 514 (2023)
- Páginas: 65-68
- Seção: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647902
- DOI: https://doi.org/10.31857/S268695432360012X
- EDN: https://elibrary.ru/DAUBQA
- ID: 647902
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A differential inclusion with a time-dependent maximal monotone operator and a perturbation is studied in a separable Hilbert space. The perturbation is the sum of a time-dependent single-valued operator and a multivalued mapping with closed nonconvex values. A particular feature of the single-valued operator is that its sum its with the identity operator multiplied by a positive square-integrable function is a monotone operator. The multivalued mapping is Lipschitz continuous with respect to the phase variable. We prove the existence of a solution and the density in the corresponding topology of the solution set of the initial inclusion in the solution set of the inclusion with the convexified multivalued mapping. For these purposes, new distances between maximal monotone operators are introduced.
Palavras-chave
Sobre autores
A. Tolstonogov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: alexander.tolstonogov@gmail.com
				                					                																			                												                								Russian Federation, Irkutsk						
Bibliografia
- Vladimirov A.A. Nonstationary dissipative evolution equations in a Hilbert space // Nonlinear Anal. 1991. V. 17. P. 499–518. https://doi.org/10.1016/0362-546X(91)90061-5
- Azzam-Laouir D., Belhoula W., Castaing C., Monteiro Marques M.D.P. Perturbed evolution problems with absolutely continuous variation in time and applications // J. Fixed Point Theory. Appl. 2019. V. 21. 40. https://doi.org/10.1007/s11784-019-0666-2
- Azzam-Laouir D., Boutana Harid I. Mixed semicontinuous perturbation to an evolution problem with time-dependent maximal monotone operator // J. Nonlinear Convex Anal. 2019. V. 20. № 1. P. 35–92.
- Azzam-Laouir D., Belhoula W., Castaing C., Monteiro Marques M.D.P. Multivalued perturbation to evolution problems involving time dependent maximal monotone operators // Evolution Equations and Control Theory. 2019. V. 9. № 1. P. 219–254. https://doi.org/10.3934/eect.2020004
- Castaing Ch., Saidi S. Lipschitz perturbation to evolution inclusions driven by time-dependent maximal monotone operators // Topol. Math. Nonlinear Anal. 2021. V. 58. № 2. P. 677–712. https://doi.org/10.12775/TMNA.2021.012
- Tolstonogov A.A. Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation // J. Math. Anal. Appl. 2017. V. 447. P. 269–288. https://doi.org/10.1016/j.jmaa.2016.09.061
- Tolstonogov A.A. Sweeping process with unbounded nonconvex perturbation // Nonlinear Analysis. 2014. V. 108. P. 291–301. https://doi.org/10.1016/j.na.2014.06.002
- Attouch H., Wets R.J.-B. Quantitative stability of variational systems. I: The epigraphical distance // Trans. Amer. Math. Soc. 1991. V. 328. № 2. P. 695–729. https://doi.org/10.2307/2001800
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
