ON THE FINITENESS OF THE SET OF GENERALIZED JACOBIANS WITH NONTRIVIAL TORSION POINTS OVER ALGEBRAIC NUMBER FIELDS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For a smooth projective curve \(\mathcal{C}\) defined over algebraic number field k, we investigate the question of finiteness of the set of generalized Jacobians \({{J}_{\mathfrak{m}}}\) of a curve \(\mathcal{C}\) associated with modules \(\mathfrak{m}\) defined over k such that a fixed divisor representing a class of finite order in the Jacobian J of the curve \(\mathcal{C}\) provides the torsion class in the generalized Jacobian \({{J}_{\mathfrak{m}}}\). Various results on the finiteness and infiniteness of the set of generalized Jacobians with the above property are obtained depending on the geometric conditions on the support of \(\mathfrak{m}\), as well as on the conditions on the field \(k\). These results were applied to the problem of the periodicity of a continuous fraction decomposition constructed in the field of formal power series \(k((1{\text{/}}x))\), for the special elements of the field of functions \(k(\tilde {\mathcal{C}})\) of the hyperelliptic curve \(\tilde {\mathcal{C}}:{{y}^{2}} = f(x)\).

Авторлар туралы

V. Platonov

Federal State Institution Scientific Research Institute for System Analysis of the Russian Academy of Sciences; Steklov Mathematical Institute Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: platonov@mi-ras.ru
Russian Federation, Moscow; Russian Federation, Moscow

G. Fedorov

Federal State Institution Scientific Research Institute for System Analysis of the Russian Academy of Sciences; National Research University Higher School of Economics; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: zhgoon@mail.ru
Russian Federation, Moscow; Russian Federation, Moscow; Russian Federation, Moscow

V. Zhgoon

Federal State Institution Scientific Research Institute for System Analysis of the Russian Academy of Sciences; Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: fedorov@mech.math.msu.su
Russian Federation, Moscow; Russian Federation, Moscow

Әдебиет тізімі

  1. Платонов В.П. Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел // УМН. 2014. V. 69:1 (415). P. 3–38.
  2. Платонов В.П., Федоров Г.В. О проблеме классификации многочленов f с периодическим разложением в непрерывную дробь в гиперэллиптических полях // Известия Российской академии наук. Серия математическая. 2021. Т. 85. № 5. С. 152–189.
  3. Платонов В.П., Федоров Г.В. О проблеме периодичности непрерывных дробей в гиперэллиптических полях // Матем. сб. 2018. Т. 209. № 4. С. 54–94.
  4. Schmidt W.M. On continued fractions and diophantine approximation in power series fields // Acta arithmetica.2000. V. 95:2. P. 139–166.
  5. Rosenlicht M. Generalized jacobian varieties // Annals of Mathematics. 1954. P. 505–530.
  6. Zannier U. Hyperelliptic continued fractions and generalized Jacobians // American Journal of Mathematics. 2019. V. 141:1. P. 1–40.
  7. Серр Ж.П. Алгебраические группы и поля классов. М.: Мир, 1968. 278 с.
  8. Ленг С. Алгебраические числа. М.: Мир, 1966. 226 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© В.П. Платонов, В.С. Жгун, Г.В. Федоров, 2023