ON SOME CLASS OF EXTREME POINTS OF THE UNIT BALL OF A HARDY-LORENTZ SPACE
- Authors: Astashkin S.V.1,2,3
- 
							Affiliations: 
							- Samara National Research University
- Lomonosov Moscow State University, Moscow Сenter of Fundamental and Applied Mathematics
- Bahcesehir University
 
- Issue: Vol 522 (2025)
- Pages: 3-6
- Section: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/683767
- DOI: https://doi.org/10.31857/S2686954325020016
- EDN: https://elibrary.ru/HYWTQE
- ID: 683767
Cite item
Abstract
The problem of a characterization of the set of extreme points of the unit ball in the Hardy-Lorentz space H(Λ(φ)), posed by E.M. Semenov in 1978, is considered. New necessary and sufficient conditions, under which a normalized function f in H(Λ(φ)) belongs to this set, are found. The most complete results are obtained in the case when f is the product of an outer analytic function and a Blaschke factor.
			                About the authors
S. V. Astashkin
Samara National Research University; Lomonosov Moscow State University, Moscow Сenter of Fundamental and Applied Mathematics; Bahcesehir University
														Email: astash@ssau.ru
				                					                																			                												                								Moscow, Russia; Moscow, Russia; Istanbul, Turkey						
References
- K. de Leeuw, W. Rudin, Extreme points and extreme problems in H1, Pacific J. Math., 8 (1958), 467–485.
- К. Гофман, Банаховы пространства аналитических функций. М.: Изд-во иностр. литер., 1963.
- И.Б. Брыскин, А.А. Седаев, О геометрических свойствах единичного шара в пространствах типа классов Харди, Зап. научн. сем. ЛОМИ, 39 (1974), 7–16. https://doi.org/10.1007/BF01455319
- S.V. Astashkin, On the set of extreme points of the unit ball of a Hardy-Lorentz space, Math. Zeitschrift (2025) 310:51. https://doi.org/10.1007/s00209-025-03763-1
- Исследования по линейным операторам и теории функций, 99 нерешенных задач линейного и комплексного анализа, Зап. научн. сем. ЛОМИ, 81, ред. Н.К. Никольский, В.П. Хавин, С.В. Хрущев, Изд-во “Наука”, Ленинград. отд., Л., 1978, 296 с.
- Linear and Complex Analysis. Problem Book. 199 Research Problems, V.P. Khavin, S.V. Khrushchev, N.K. Nikol’skii, eds., Lecture Notes in Mathematics 1043, Springer-Verlag, Berlin, 1984.
- Linear and Complex Analysis. Problem Book 3. Part I, V.P. Khavin, N.K. Nikol’skii, eds., Lecture Notes in Mathematics 1573, SpringerVerlag, Berlin, 1994.
- С.Г. Крейн, Ю.И. Петунин, Е.М. Семенов, Интерполяция линейных операторов. М.: Наука, 1978.
- J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, II. Function Spaces. Springer-Verlag, Berlin–New York, 1979.
- N.L. Carothers, S.J. Dilworth and D.A. Trautman, On the geometry of the unit sphere of the Lorentz space Lw,1, Glasgow Math. J., 34 (1992), 21–25.
- N.L. Carothers, B. Turett, Isometries on Lp,1, Trans. Amer. Math. Soc., 297 (1986), 95–103.
- П. Кусис, Введение в теорию пространств Hp. М.: Мир, 1984.
- Б.С. Кашин, А.А. Саакян, Ортогональные ряды. М.: Изд-во АФЦ, 1999.
- J. Carrillo-Alanı´s, G.P. Curbera, A note on extreme points of the unit ball of Hardy-Lorentz spaces, Proc. Amer. Math. Soc., 152 (2024), 2551–2554.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					